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Abstract 

Wireless Sensor Networks (WSNs) are embedded networks made up of tiny wireless 

devices referred to as sensors. They can be distinguished based on the type of sensing 

elements used in their sensors. Two important classes of WSNs are directional and 

biological WSNs. The former is given its name because the sensing region of a direc-

tional sensor is viewed as a sector in a two-dimensional plane. The latter, however, 

is given its name because its sensing elements are biological materials like enzymes. 

One of the major challenges introduced by directional WSNs is the fact that the 

existing mathematical models developed for conventional WSNs cannot directly be 

used for solving the directional sensor placement and configuration problems. There-

fore, new optimization models which capture the primary parameters characterizing 

directional sensors are necessary. On the other hand, a major challenge introduced by 

biological WSNs is the heat generated as a result of power consumption and wireless 

radiation. When biological WSNs are operated in temperature-sensitive environments 

like the human body, the temperature of the surrounding tissues might rise. The tis-

sues might be damaged if the maximum safe temperature level is exceeded. Therefore, 

thermal management techniques are indispensible. 

The first objective of the work presented in this dissertation is to develop opti-

mization models for the planning of directional WSNs. Toward that end, the exist-

ing literature is critiqued and gaps are identified. Then, three fundamental planning 

problems are presented. The problems are formulated as Integer Linear Programming 
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(ILP) models. The wide applicability of the proposed models and their effectiveness 

are also discussed. 

The second objective in this dissertation is to develop stochastic optimization 

models for the control of biological WSNs. The framework of Markov Decision Pro-

cesses (MDPs) is used for building the optimization models. The solution of an MDP 

model is a policy which can be used to operate the biological WSNs in such a way that 

the maximum safe temperature level is never exceeded. When compared to existing 

policies, the policies produced by the proposed MDP models are superior in terms of 

network lifetime and temperature increase. Several techniques for handling large-size 

MDP models are also investigated. 
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Chapter 1 

Introduction 

A Wireless Sensor Network (WSN) is typically made up of a large number of energy-

constrained and possibly temperature-constrained sensor nodes and one or more sink 

nodes (also referred to as base stations). Sensor nodes (hereafter, referred to as 

sensors) are tiny devices that are equipped with multiple on-board sensing elements, 

a microcontroller and a wireless interface. They are deployed to study and monitor 

a variety of phenomena and environments at close proximity. They generate, process 

and forward data to sink nodes which are mainly responsible for data gathering and 

network management. 

The list of possible applications of WSNs continues to grow as we learn more 

about them. The following are some examples: 

1. Military and defense: battlefield surveillance and ground reconnaissance, 

2. Environment: fire detection and precision agriculture, 

3. Health: telemonitoring and patient tracking, and 

4. Disaster recovery: search and rescue. 

Regardless of the type of sensors used in the above applications, two fundamental 

issues always arise when using WSNs. These two issues are coverage and manage-
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ment. Coverage is concerned with whether any location or object is not in the sensing 

region of at least one sensor. Management, on the other hand, is concerned with ef-

fectively controlling resources (like energy) and the effect of using them (like heat). 

The importance of these two issues varies between the classes of sensors and their ap-

plications. For example, in an application using video sensors for surveillance, energy 

management is much more important than the effect caused by energy consumption. 

However, in applications requiring the implantation of sensors into a patient's body, 

the heat resulting due to energy consumption is the first and most important concern. 

In this work, two important classes of sensors are considered: (1) directional and 

(2) biological. The class of directional sensors contains all sensors whose sensing 

region is represented as a sector. In fact, this class includes all conventional sensors 

with a disk-like sensing region since a sector geometrically is a portion of a disk. 

Coverage is the most frequent issue arising in the applications of directional sensors. 

On the other hand, the class of biological sensors (biosensors, for short) contains 

sensors whose sensing elements are biological materials such as enzymes and antibod-

ies. Biosensors can be subclassified further as either directional or non-directional. 

Examples of directional biosensors include optical and tube-like biosensors. For this 

class of sensors, the heat generated due to power consumption is the most important 

issue, especially when operating in sensitive environments such as the human body. 

This chapter is organized as follows. First, an overview of the research conducted 

in this dissertation is given. Then, the main contributions are summarized. Finally, 

the overall organization of the dissertation is described. 

1.1 Overview 

Directional and biological WSNs inherit all the technical challenges introduced by 

conventional WSNs. In addition, they introduce new ones that are unique to them. 
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For example, directional WSNs are expected to be capable of carrying video data 

which typically requires much higher bandwidth than that required by conventional 

WSNs whose main purpose is to observe and sample the surrounding environment. 

Also, the directionality of sensors requires a careful tuning of sensor parameters in 

order to achieve the performance objectives under a reasonable cost. 

As for biological WSNs, however, a major challenge to realizing their full potential 

is the heat they generate as a result of power dissipation and wireless radiation. 

The effect of the generated heat is balanced by the human thermoregulatory system. 

However, if the generated heat is larger than what can be drained, the temperature 

of the tissues rises. The affected tissues might be damaged if the blood flow is not 

sufficient. As a consequence, the maximum safe temperature level which the tissues 

can withstand becomes a limiting factor in the operation of biological WSNs. 

From the above, it is clear that the mathematical models developed for conven-

tional WSNs cannot directly be used for optimizing directional and biological WSNs. 

This is because the applications and parameters involved are different. Hence, in this 

dissertation, two broad research themes are explored. They are the following: 

1. Directional sensor placement and configuration and 

2. Thermal management in biological WSNs. 

The first research theme was chosen because of the little attention the area of 

directional WSNs planning has received. Thus far, most of the published works on 

directional WSNs focus on optimizing them after they are randomly deployed in a 

sensor field (e.g., see [1], [2] and [3]). Another reason is that deterministic placement 

might be favored over random placement. For example, there might be a limit on 

the number of sensor nodes which can be used in a mission due to a limited budget 

or payload1. Also, the required coverage and connectivity might not arise since some 
1 The current cost of an ordinary Crossbow sensor node consisting of the MICAz mote and 
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sensors might not survive the air drop. Besides, random placement can introduce 

nonefficient spending of energy. 

The second research theme, on the other hand, was chosen because of the need 

for intelligent thermal management techniques in biological WSNs. Such techniques 

would, for example, enable long-term measurements to be performed and thus help 

in avoiding the prohibitive cost of continually visiting the doctor's office. It is also es-

sential to understand how the performance of these techniques is affected by different 

design parameters like the maximum safe temperature level. 

1.2 Contributions 

In this section, the main problems addressed in this dissertation are 

our technical contributions are summarized. Also, the details of our 

submitted works are given. 

1.2.1 Directional Sensor Placement 

Sensor placement (or deployment) is a network planning problem which arises out of 

the need to reduce deployment, installation and maintenance costs. In this problem, 

the number of necessary sensors, their types and (approximate) locations within a 

sensor field are determined so that the overall operating cost of the WSN is minimum 

while requirements such as coverage, lifetime and connectivity are satisfied. Sensor 

placement can be either deterministic or random. In deterministic placement, a net-

work planner selects the sites where the sensors are to be placed. On the other hand, 

in random placement, sensors are scattered in the sensor field. For example, sensors 

may be dropped from an aircraft traveling over the sensor field. 

MTS400 multi-sensor board is over US$300 [4]. In addition, if we take into consideration the cost 
of batteries and networking devices, the cost of deploying a large-scale (> 3,000 nodes) WSN would 
easily exceed a million US dollars. 

presented and 

published and 
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Planning of conventional WSNs has received excellent attention from the WSNs 

community. However, when a conventional WSN is equipped with directional sensors, 

network planning problems might not be treated in the same way as in conventional 

WSNs. Also, the algorithms designed for conventional WSNs behave differently when 

used in directional WSNs (for example, see [5] and [6]). In addition to that, the 

mathematical models developed for conventional WSNs might not directly be used 

for optimizing directional WSNs due to the different parameters involved. 

In this part of the dissertation, two fundamental questions are addressed. They 

are as follows: 

1. What is the minimum number of directional sensors necessary to achieve a full 

coverage and connectivity2? 

2. What is the minimum possible cost if more than one directional sensor type is 

available? 

Two optimization models axe proposed to answer the above two questions. They 

are formulated as Integer Linear Programming (ILP) models. In the first model, 

there is only one type of directional sensors. The objective is to minimize the number 

of sensors by choosing the best subset of a given set of locations where sensors can 

be installed. This model turns out to be a generalization of sensor placement and 

grid coverage problems in conventional WSNs. In the second model, however, there 

is more than one type of sensors. The objective is to reduce the cost of sensors by 

appropriately choosing where to install a sensor and what sensor type to install at 

the selected site. Two refereed conference papers resulted from our work in this part: 

1. Yahya Osais, Marc St-Hilaire and F. Richard Yu, "The Minimum Cost Sensor 

Placement Problem for Directional Wireless Sensor Networks", In Proc. IEEE 

Vehicular Technology Conference (VTC'), pp. 1-5, Sept. 2008. 
2By full connectivity, it is meant that each sensor can deliver its data to the base station. 
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2. Yahya Osais, Marc St-Hilaire and F. Richard Yu, "On Sensor Placement for Di-

rectional Wireless Sensor Networks", In Proc. IEEE International Conference 

on Communications (ICC), pp. 1-5, June. 2009. 

1.2.2 Optimal Directional Sensor Configuration 

A directional sensor has three tunable parameters: sensing range, field of view and 

direction. The ability to tune these parameters enables the WSN designer to meet 

application requirements like coverage and connectivity. A directional sensor is said to 

be optimally configured if the values assigned to its tunable parameters are optimal. 

This part of the dissertation seeks to answer the question of what the optimal 

configuration of a directional sensor is before it is installed in the sensor field. This 

question is captured by a problem we refer to as the Optimal Sensor Configuration 

(OSC) problem. The solution to this problem is an ILP model that eases the param-

eter value selection process for directional sensors. In this model, the network cost 

is determined by the number of sensors as well as their configuration. The following 

publications resulted from our work in this part: 

1. Yahya Osais, Marc St-Hilaire and F. Richard Yu, "On the Sensor Placement 

Problem in Directional Wireless Sensor Networks", Planning and Optimisation 

of 3G and 4G Wireless Networks, pp. 305-330, Johnson I. Agbinya, Editor, 

ISBN 978-87-92329-24-0, River Publishers, 2010. 

2. Yahya Osais, Marc St-Hilaire and F. Richard Yu, "Directional Sensor Placement 

with Optimal Sensing Range, Field of View and Orientation", Mobile Networks 

and Applications, Vol. 15, No. 2, pp. 216-225, 2009. 

3. Yahya Osais, Marc St-Hilaire and F. Richard Yu, "Directional Sensor Placement 

with Optimal Sensing Range, Field of View and Orientation", In Proc. IEEE 
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International Conference on Wireless and Mobile Computing, Networking and 

Communication (WIMOB), pp. 19-24, Oct. 2008. 

1.2.3 Thermal Management Via Dynamic Sensor Scheduling 

Biological WSNs will find many applications in human and animal healthcare. How-

ever, there are obstacles that must be overcome before their full potential can be 

realized. One such obstacle is that the heat generated by implanted biosensors may 

damage the tissues around them. Therefore, thermal management techniques are 

necessary. One such technique is based on the notion of dynamic sensor scheduling 

in which biosensors are dynamically scheduled to transmit their measurements. The 

scheduler takes into consideration the state of each biosensor and its wireless channel 

state information. 

In this part of the dissertation, the dynamic sensor scheduling problem is formu-

lated as a Markov Decision Process (MDP). Not like previous works, the state infor-

mation of the wireless channel and the temperature increase in the tissues caused by 

the generated heat is incorporated into the model. The solution of the model gives an 

optimal policy that when executed, it will result in the maximum possible network 

lifetime under a constraint on the maximum temperature tolerable by the patient's 

body. The optimal policy is compared with two policies one of which is specifically 

designed for biological WSNs. The optimal policy turns out to be superior in terms 

of both network lifetime and temperature increase. 

The proposed MDP model can be solved only for networks with a small number 

of biosensors. This is due to the large number of possible system states. Fortunately, 

multiple system states can be combined (or aggregated) if they are equivalent. In 

this way, the size of the MDP model can significantly be reduced. In this regard, two 

types of system states are identified and shown to result in a considerable reduction in 

model size when they are aggregated. The equivalence of the optimal policy produced 
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by solving the reduced MDP model is also established. Two papers resulted from our 

work in this part: 

1. Yahya Osais, F. Richard Yu and Marc St-Hilaire, "Dynamic Sensor Scheduling 

for Thermal Management in Biological Wireless Sensor Networks", Submitted 

to the Journal of Wireless Networks, Mar. 2009. 

2. Yahya Osais, F. Richard Yu and Marc St-Hilaire, "Thermal Management of 

Biosensor Networks", In Proc. IEEE Consumer Communications and Network-

ing Conference (CCNC), pp. 1-5, Jan. 2010. 

1.2.4 Optimally Operating a Rechargeable Biosensor 

Biosensors are powered by either rechargeable built-in batteries or by continuously 

sending electric energy in the form of electromagnetic waves. The use of batteries 

necessitates periodic recharging which can be performed using energy resulting from 

vibration, motion, light and heat. However, a more mature approach is to wirelessly 

collect energy from a radio frequency (RF) source and then convert it into usable 

power. This approach is widely used in the industry to transfer data and power to 

biosensors. It is also more practical since many sensors can be recharged simultane-

ously. 

When implanted in a temperature-sensitive environment like the human body, a 

rechargeable biosensor must be operated with extreme caution at no more than the 

allowed maximum safe temperature level. This requirement gives rise to a stochas-

tic control problem whose objective is to find a policy for operating the rechargeable 

biosensor in such a way that a performance criterion is maximized while the tempera-

ture in the surrounding region of the biosensor does not exceed the allowed maximum 

limit. This problem can be modeled as an MDP with three possible actions: Sam-

ple, Recharge and Sleep. The average number of samples is used as the performance 
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criterion. The solution is an optimal policy that maximizes the average number of 

samples which can be generated by the biosensor while observing the constraint on 

the maximum safe temperature level. 

Due to the exponential nature of the problem and the difficulty of describing the 

structure of the optimal policy, two heuristic policies are proposed. The first one is 

greedy and is used to provide insight into the design of any heuristic policy. On the 

other hand, the second one closely mimics the behavior of the optimal policy. In 

addition, it is shown how Q-learning, which is a form of reinforcement learning, can 

be used for learning the optimal policy. The average number of time slots needed to 

generate a sample is used as a measure to distinguish between the performance of the 

different policies. The following papers resulted from our work in this part: 

1. Yahya Osais, F. Richard Yu and Marc St-Hilaire, "Optimal Management of 

Rechargeable Biosensors in Temperature-Sensitive Environments", Submitted 

to the IEEE Transactions on Network and Service Management, May 2010. 

2. Yahya Osais, F. Richard Yu and Marc St-Hilaire, "Optimal Management of 

Rechargeable Biosensors in Temperature-Sensitive Environments", To Appear 

in the Proceedings of the IEEE Vehicular Technology Conference, Sept. 2010. 

1.3 Organization 

The rest of the dissertation is organized as follows. First, in Chapter 2, the literature 

related to both sensor placement and biosensors is reviewed. Second, in Chapter 3, 

the directional sensor placement problem is introduced along with the necessary back-

ground information. Then, in Chapters 4 and 5, the proposed optimization models 

for directional sensor placement and configuration are described, respectively. After 

that, in Chapter 6, the definition of the biosensor thermal management problem and 

necessary background information are given. Next, in Chapters 7 and 8, the prob-
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lems of thermal management via dynamic sensor scheduling and optimally operating 

a rechargeable biosensor are discussed, respectively. Finally, in Chapter 9, conclusions 

are given and directions for further research are suggested. 
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Chapter 2 

Related Work 

This chapter provides a review of the literature related to our work. First, sensor cov-

erage and the different notions of coverage are reviewed. Then, the works pertaining 

to the sensor placement problem are described. After that, the works concerned with 

biosensors and their effects are summarized. Finally, the notion of network lifetime 

is discussed. 

2.1 Sensor Coverage 

Coverage can be thought of as a measure of the quality of the sensing service provided 

by a WSN [7]. Different notions of coverage exist. However, the most used ones 

are area coverage, point coverage and barrier coverage. In area coverage problems, 

the objective is to cover (or monitor) a region. On the contrary, in point coverage 

problems, the objective is not to cover a whole region. It is rather to monitor some 

interesting locations within the region. Finally, in barrier coverage problems, the 

objective is to minimize the probability of undetected penetration through the barrier; 

i.e., sensor network. The notion of barrier coverage is inspired by Gage's classification 

[8]. 

Coverage was also studied in other fields such as computational geometry and 
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robotics. The art gallery problem is a notable example in computational geometery. 

Its objective is to find the minimum number of observers necessary to cover an art 

gallery room such that each item is seen by at least one observer [9]. The art gallery 

problem is contrasted with the DSP problem in the next section. 

As for the area of robotics, the notion of coverage was introduced by Gage for 

studying the coverage achievable by a many-robot system [8]. He defined three types 

of coverage: blanket coverage, barrier coverage and sweep coverage. In the blanket 

coverage, the goal is to achieve a static arrangement of robots that maximizes the 

total detection area. In barrier coverage, the goal is to achieve a static arrangement of 

robots that minimizes the probability of undetected penetration through the barrier. 

The sweep coverage is equivalent to a moving barrier. 

The above notions of coverage are considered conservative since they define a 

location to be covered if it is within the sensing region of at least one sensor. This 

kind of coverage is referred to as physical coverage. Information coverage, on the 

other hand, is a relaxed notion of coverage. It was introduced in [10]. The motivation 

behind this new notion of coverage is the fact that for some applications like target 

detection, some parameters of the event of interest decay with distance (e.g., the 

sound generated by the movement of a tank). Therefore, even the sensor closest to 

the position of the event might not be able to detect the event. However, several 

sensors can cooperate to detect the event. 

Information coverage is based on estimation theory where sensors cooperate to 

make an estimate of the data at a particular location. A location is considered 

covered by a set of sensors if an event occurring at that location can be estimated 

with a guaranteed estimation error. Clearly, with this definition of coverage, the 

concept of sensing region of a sensor is not applicable any more. This is what caused 

the introduction of the notion of occupation region in [11], A point belongs to the 

occupation region of a sensor if it can be information-covered by the sensor and its 
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neighbors. 

Several network services and capabilities depend on the notion of coverage used 

in designing WSNs. For example, in [10], it was shown that significant savings in 

terms of sensor density for complete coverage can be achieved by using information 

coverage instead of physical coverage. Also, it was shown in [12] that the notion of 

information coverage helps in balancing between communication energy consumption 

and network coverage requirement. 

2.2 Sensor Placement 

In this section, three fundamental problems similar to the DSP problem are reviewed. 

They are the art gallery, camera placement and conventional sensor placement prob-

lems. It is argued that the DSP problem cannot be reduced to any one of them. Also, 

a brief description of some other relevant works involving directional sensors is given. 

2.2.1 Guard Placement 

The DSP problem is similar to the art gallery problem which is the theoretical study 

on how to place guards (or devices with vision capabilities) in an arbitrarily shaped 

polygon so as to cover the entire area. Chvatal [13] proved that for a simple polygon 

P with n sides, at most |_f J guards with a 360° FOV and an unlimited visibility range 

are needed such that every point of P is visible from at least one of them. Later, 

Fisk [14] showed that if P is triangulated, its vertices can be colored with three colors. 

Therefore, as a result, the number of guards is equal to the number of vertices colored 

with the least used color. 

Algorithm 3 shows the general steps for solving the art gallery problem. It is 

based on Fisk's proof given in [14]. The solution assumes that each triangle in the 

triangulation of P (denoted by T(P)) will have a guard at one of its vertices. Thus, 
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Algorithm 1 Solving the art gallery problem. 
1: Triangulation 

T{P) <— Polygon P is triangulated 
2: 3-Coloring 

Each v € T{P) is colored with a distinct color 
3: Guard Placement 

Guards are placed at the vertices belonging to the class of the least used color 

a guard placed on a vertex v E T(P) can see at least each point inside the trian-

gles whose corner points contain v. Of course, this is possible because there are no 

restrictions on the FOV and range of vision of the guards. 

A notable application of the art gallery problem is in the area of antenna placement 

in wireless networks, such as GSM and UMTS. For example, in [15], the authors 

formulated the antenna placement problem as a 3D art gallery problem and provided 

a polynomial time approximate solution for it. The solution gives the number of 

antennas necessary to cover the whole service area and where they should be placed. 

The solution is obtained as follows. First, the set of control points visible to each 

antenna is computed. Then, graph coloring is used to make a first placement of 

antennas. Finally, a set covering model is used to reduce the number of antennas 

needed to cover the service area. 

Clearly, the above results and algorithms cannot be applied to the DSP problem. 

This is because of the following reasons: 

1. In the DSP problem, the sensing region (or visibility) of a directional sensor is 

restricted due to the constraints on sensing range and FOV. 

2. The polygon formed by connecting the points corresponding to placement sites 

may not enclose all the control points in the sensor field. Further, it may self-

intersect. 

3. Sensors can be of different types (e.g., different ranges). In the art gallery 

problem, however, guards are assumed to be of the same type (i.e., similar 

14 



capabilities). 

4. The location of sensors is restricted to a finite number of sites. Also, the number 

of points to be covered is finite. 

2.2.2 Camera Placement 

The DSP problem is also similar to the camera placement problem in computer vision 

where the goal is to determine the optimal number and location of cameras for a 

region to be monitored. Horster and Lienhart [16,17] developed a binary integer 

programming model by discretizing the region into a grid. Each grid point represents 

a potential placement site for a camera. They used a simple visibility model where 

they described the range of vision of a camera by a triangle. The proposed model is 

focused on coverage with respect to a predefined sampling rate. It guarantees that 

an object in the monitored region will be imaged at a minimum resolution. 

Inspired by the above work, Zhao and Cheung [18] developed an iterative grid 

based binary integer programming model for the visual tagging problem where the 

goal is to identify distinctive visual features of objects in two or more camera views. 

They also presented a comprehensive visibility model for computing the visibility 

of a single tag. The proposed model finds the minimum number of cameras, their 

poses and their locations in the monitored region in order to achieve a desired level 

of visibility. 

We might not use the models developed for the camera placement problem to 

solve the DSP problem. However, we can still be inspired by them. The reasons that 

might prevent us include the following: 

1. Cameras are mounted on walls and ceilings. Sensors, however, are placed on 

the ground. This requires new visibility models. 

2. Sensors have a limited energy supply. Cameras do not have this problem since 
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they are typically powered from wall outlets. Thus, energy must be considered 

in optimization. 

3. Sensors must be connected among themselves. Thus, connectivity is another 

element that must be considered in optimization. 

4. Sensors can process data before it is delivered to the base station. This gives 

rise to issues such as routing and redundancy reduction. 

2.2.3 Conventional Sensor Placement 

Several models exist in the literature for the placement problem of conventional sen-

sors. Chakrabarty et al. [19] were the first to study this problem on sensor fields 

comprising discrete points that are grid points. A 2D or 3D grid of points is to be 

covered. Sensors can be placed only at grid points. Each grid point is to be covered 

by at least a sensors, where a > 1. There are |T| sensor types. A sensor of type 

k G T costs Cfc dollars and has a sensing range of rs
k meters. Only one sensor can be 

placed at any grid point. They made an assumption such that all sensors can directly 

communicate with the base station. Therefore, the connectivity constraints were not 

considered. The objective is to find the least cost sensor placement which provides the 

required a-coverage. The problem is formulated as an ILP with 0(|Y|(|f2| + |II|)2) 

variables and 0( |T | ( | i l | + |I1|)2) constraints, where \£l\ and |I1| are the number of 

control points and placement sites, respectively. Control points and placement sites 

are combined into one set corresponding to the grid points. 

Sahni and Xu [20] proposed another model that reduces the number of variables 

to 0( |T | ( |Q| + |XT|)) and the number of constraints to + |II|). That is possible 

because the set of neighbors for each grid point is computed beforehand and given 

to the model as an input. The proposed model can be applied to any set of discrete 

points. 
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The above two models are practically solvable only for a small number of points. 

Wang and Zhong [21] compared the runtime of the two models. The models are 

implemented using Ipsolve 5.5 [22], It was observed that when the sensor field is 

bigger than 9 x 9 (i.e., 81 grid points), execution of the Chakrabarty et al.'s model is 

suspended with an out-of-memory error message. On the other hand, for a 20 x 20 

sensor field, the runtime of Sahni and Xu's model for a = 1 surges to 14 hours. 

Sahni and Xu [23] proposed another ILP formulation for finding the minimum cost 

placement of sensors. The model handles the problem of placing sensors at a subset 

of preselected sites so as to minimize the sensor cost while providing a specified 

degree of coverage of the control points. The sets of placement sites and control 

points are merged together to form a single set. Each sensor is capable of directly 

communicating with the base station which is situated within the communication 

range of all sensors. The total number of variables isO(|Y|(|Q| + |II|)) and constraints 

is 0 ( ( |T | + m ) ( | f i | + |II|)), where m is the number of modalities. A modality is the 

quantity to be monitored, such as temperature, humidity and sound. 

The above models might not be used to solve the DSP problem because they 

assume that sensors have a circular sensing range. Also, they only consider coverage. 

In our case, we consider coverage as well as connectivity. In addition, our model 

captures the limited visibility of sensors and their ability to change their orientation. 

2.2.4 Other Relevant Works 

There are some works that especially deal with directional sensor networks. For 

example, deterministic placement for connected coverage was discussed in [24], The 

maximization of target coverage while minimizing the number of active sensors was 

studied in [1], Area coverage was considered in [2], The goal was to maximize the 

covered area by scheduling the directions of sensors. Prolonging the network lifetime 

was discussed in [3]. The proposed solution is to organize the directions of sensors 
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into a group of non-disjoint cover sets. Each cover set covers all the targets in the 

sensor field. One cover set is activated at a time. 

Other relevant works include node mobility for enhancing data collection and 

energy performance in WSNs. For example, applications like mapping [25, 26] and 

mine-removal [27] require mobile sensors that are capable of moving to accomplish 

their primary mission. Mobility may be random (e.g., using animals [28,29]), pre-

dictable (e.g., public transport vehicle [30]) or controlled by the network (e.g., robotic 

sensors [31]). 

Mobile sensor networks or robotic sensor networks have enormous potential for 

positive impact in our society. They can be employed for search-and-rescue operations 

in emergency situations [32,33]. In environmental monitoring, they can be used to 

detect forest fires or monitor rare species [34], In health care, they can monitor 

patients or the elderly over extended periods of time without confining them to a 

small area. A number of automation tasks, such as surveillance, monitoring energy 

consumption and quality inspection, can also benefit from robotic sensor network 

technology. 

2.3 Biosensors 

The research on the possible biological effects caused by biosensors and how to mit-

igate those effects is very recent. Most of the existing research deals with other 

technical issues such as energy efficiency and quality of service. In this section, the 

limited available literature is briefly reviewed. 

The effect of leadership rotation in a cluster-based BWSN was studied in [35]. It 

was observed that rotating the role of which node collects measurements from other 

sensors and deliver them to the base station can significantly reduce the temperature 

increase in tissues due to wireless communication. The computation of an optimal ro-
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tation sequence involves using the Pennes's bioheat equation and the FDTD method 

to calculate the temperature increase due to a sequence. Because of its time require-

ment, the authors proposed another scheme to calculate the temperature increase. 

It is referred to as the Temperature Increase Potential (TIP). It efficiently estimates 

the temperature increase of a sequence. Using this scheme and a genetic algorithm, 

the authors were able to find the minimum temperature increase rotation sequence. 

However, they did not consider the effect of the wireless channel and limited energy. 

The issue of routing in BWSNs was studied in [36]. The authors proposed a 

thermal-aware routing protocol that routes the data away from high temperature 

areas referred to as hot spots. The location of a biosensor becomes a hot spot if the 

temperature of the biosensor exceeds a predefined threshold. The proposed protocol 

achieves a better balance of temperature increase and shows the capability of load 

balance. The effect of the wireless channel and limited energy, on the other hand, is 

not incorporated into the operation of the protocol. 

The sensor scheduling problem is considered in [37]. It is formulated as an MDP 

and the objective is to find an operating policy which maximizes the network lifetime. 

The state of a sensor is characterized by its current energy level only. An interesting 

observation is that since the total residual energy in the WSN decreases in each time 

slot, the value iteration algorithm used to solve the MDP model converges in one 

iteration. This is not guaranteed if the temperature is included in the model because 

when a sensor cools down (i.e., its temperature decreases), it transitions back to a 

less hot state. 

Dynamic sensor activation in networks of rechargeable sensors is considered in [38]. 

The objective is to find an activation policy which maximizes the event detection 

probability under the constraint of slow rate of recharge of the sensor. The state of 

the system is characterized by the energy level of the sensor and whether or not an 

event would occur in the next time slot. The recharge event is random and recharges 
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the sensor with a constant charge. The model does not include the state of the 

wireless channel which is very crucial when temperature is considered. 

Body sensor networks [39] with energy harvesting capabilities are another kind 

of WSNs in which each sensor has an energy harvesting device that collects energy 

from ambient sources such as vibration, light and heat. In this way, the more costly 

recharging method which uses radiation is avoided. The interaction between the 

battery recharge process and transmission with different energy levels is studied in 

[40]. The proposed policies utilize the sensor's knowledge of its current energy level 

and the state of the processes governing the generation of data and battery recharge 

to select the appropriate transmission mode for a given state of the network. 

The above works have motivated us to explore further the biological effects of 

BWSNs. As a result, we have noticed a lack of information on how to optimally 

operate an implanted BWSN when bounds such as the maximum safe temperature 

increase exist. Most of the existing works assume that energy is the only limiting 

factor in the operation of WSNs. However, this is not the case in BWSNs where 

the increase in temperature is a serious limiting factor. In addition, the effect of 

the wireless channel is not included explicitly in the current models used to compute 

optimal operating policies for BWSNs such as in [35,36]. 

2.4 Network Lifetime 

Different performance meterics have been used in the design of WSNs. Examples 

include mutual information between the a priori and the a posteriori target states 

[41], mean-squared error in state estimation [42], the difference between the desired 

and the estimated covariance matrix [43], sensor usage cost [44] and sum capacity 

[45]. Network lifetime was used as a performance measure in [37,46-48]. In this 

dissertation, network lifetime is used as one of the performance measures for BWSNs. 
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The lifetime of a WSN is highly dependent on the rate at which sensors drain 

their energy. Sensors consume energy to perform sensing, process the sensed data and 

transmit the data to the base station. Radio communication is considered to be the 

single biggest source of energy consumption when compared to sensing and processing 

[49]. The radio interface uses energy when it transmits, receives or is idle. The energy 

required to transmit is usually the highest. According to the MICA2 sensor platform 

specifications [50], the current draw for the radio interface is as follows: 

1. 27mA for transmission with maximum power, 

2. 10mA for reception, and 

3. < luA for sleeping. 

As a result, a significant research effort has been focused on designing energy 

efficient mechanisms at all protocol layers: physical, medium access control, routing 

and application. In order to prolong network lifetime, different strategies should 

be adopted at all network layers including hardware improvement at physical layer, 

energy efficient medium access control protocol, topology control and routing. These 

strategies include avoiding packet collision [51] and idle listening [52], limiting carrier-

sense energy consumption [53], optimal routing path selection and content filtering 

or error tolerance [54,55] and data aggregation at application layer [56]. 

Finally, it should be pointed out that the definition of lifetime depends on the 

underlying network application. One of the commonly used lifetime definitions is the 

number of data collections (i.e., time slots in which samples are generated by the 

network) until the number of dead sensors reaches a threshold [57]. We assume that 

the network lifetime terminates when a failure in data collection occurs, i.e., there is 

no active sensor in a data collection slot. In this case, two scenarios are possible. The 

first one is to recharge the sensors off-line and then re-start the network. The second 
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scenario, however, is to allow the recharging of sensors during the normal operation 

of the network. 
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Chapter 3 

The Directional Sensor Placement 

Problem 

Several variations of the Directional Sensor Placement (DSP) problem could be envi-

sioned by WSN designers. A basic but fundamental model of the problem is studied 

in this dissertation. Before delving into more details, however, the necessary back-

ground information is given in this chapter. Also, a description of the DSP problem 

as we envision it is stated. 

3.1 Sensor Coverage Model 

The behavior of a sensor is dictated by many parameters. However, only parameters 

that play a role in the issues relevant to the DSP problem are considered. The fol-

lowing parameters completely characterizes the sensing region of a sensor (see Figure 

3.1): 

1. (xi,yi): the Cartesian coordinates which denote the location of the sensor in a 

two-dimensional plane, 

2. vici: a unit vector which cuts the sensing sector into half. This parameter defines 
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• Directional Sensor 
• Object Being Monitored 

Figure 3.1: A directional sensor monitoring two objects. 

the direction (or orientation) of the sensor, 

3. (j)i\ the maximum angle of sensing which can be achieved by the sensor. It is 

also called Field of View (FOV), and 

4. rf: the maximum sensing range of the sensor beyond which an object cannot 

be monitored. 

The direction of a sensor is defined by the angle between the positive x-axis and 

its unit vector. The set of possible directions include the angles from 1° to 360°. The 

FOV of a sensor, however, is defined as the angle whose sides define the range of 

vision of the sensor. The set of possible FOVs include the set of all possible angles 

(i.e., 0°—360°). 

A sensor is said to be directional if its FOV is less than 360°. The sensing region of 

a directional sensor is represented as a sector (see Figure 3.2(a)). On the other hand, 

a sensor whose FOV is intrinsically 360° is also a directional sensor but its sensing 

region is represented as a disk (see Figure 3.2(b)). In both figures, the shadowed area 

is the current sensing region of the sensor. 
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(a) (b) 
Figure 3.2: Two possible representations of the sensing region of a sensor (a) a sector 
and (b) a disk. 

Video, ultrasonic and infrared sensors are all examples of directional sensors. Also, 

sensors with a 360° FOV might become directional in their sensing capability if their 

FOV is partially obstructed by physical objects or natural phenomena such as fog 

and snow. Surveillance and monitoring are examples of applications which require 

directional measurements in order to achieve their goals with a high degree of accu-

racy. For example, consider a standard Charge-Coupled Device (CCD) video camera. 

This camera is a directional sensor since its FOV is less than 360°. Thus, in order for 

a control point to be covered, the line segment connecting it and the camera must lie 

inside a cone oriented along the camera axis. The volume of the cone is determined 

by the sensing range and FOV of the camera. 

Finally, it should be pointed out that in a real WSN design task, the sets of possible 

sensing ranges, FOVs and directions are finite and contain only discrete values. That 

is because the first two sets are dictated by the available sensors. The last set, in 

contrast, is dictated by the network designer who typically requires a small number 

of directions. 
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3.2 Test for Coverage 

The four parameters described in the previous section determines the relationship 

between a sensor and object in the sensor field. Mathematically, an object at position 

j is covered by a sensor at position i if the following two conditions are true [1]: 

I l 4 l l 2 < r ? (3.1) 

where dij is the distance vector from the sensor to the object. 

The first condition checks if the object is within the sensing range of the sensor. 

The second condition checks if the distance vector is within the FOV of the sensor. 

This is done by performing the inner product operation with equality when the object 

is along one of the two edges of the sensing region of the sensor. 

3.3 Problem Description 

We consider the following scenario for the DSP problem. A directional WSN is to 

be deployed in a field. An engineer is assigned the task of studying the field and 

coming up with a floorplan for it. Figure 3.3 shows an example of a floorplan for a 

two-dimensional sensor field. The floorplan contains three kinds of sites (or points of 

interest). The first set of sites is referred to as placement sites. These are locations 

where sensors can be installed. Only one sensor can be installed at a placement site. 

The second set of sites represent control points where an event of interest might occur 

or a target might touch. These sites are monitored by the sensors. The last set of 

sites are used to host base stations which are used for collecting information from the 

sensors. 
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Figure 3.3: A typical floorplan for a 2D sensor field. 

Given the floorplan of a sensor field, we would like to develop optimization models 

to answer the following questions: 

1. What is the minimum number of directional sensors necessary to achieve a full 

coverage and connectivity? 

2. What is the minimum possible cost if more than one directional sensor type is 

available? 

3. What is the optimal configuration of a directional sensor? 
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Chapter 4 

Reducing Number of Sensors and 

their Cost 

This chapter presents two optimization problems which naturally arise when plan-

ning directional WSNs. In the first problem, the objective is to minimize the number 

of sensors. In the second problem, however, the objective is to minimize the cost 

of sensors. In both problems, there are constraints on the minimum required cover-

age of control points and connectivity of the resulting WSN. The two problems are 

formulated as ILP models. 

4.1 Minimum Sensor Placement 

The Minimum Sensor Placement (MSP) problem is a fundamental problem in which 

the goal is to find the minimum number of directional sensors such that every control 

point in the sensor field is covered by at least one sensor and the resulting network 

is connected. Consider, for example, Figure 4.1. There are five placement sites, five 

control points and one base station. Four sensors are required to cover the five control 

points. They are sensors 1, 2, 3, and 4. In addition, four wireless links are established 

to carry traffic from the sensor nodes to the base station. They are shown by the 
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Figure 4.1: Four out of five sensors are necessary to cover the five control points and 
establish a connected network. 

bold arrows in Figure 4.1. 

4.1.1 Mathematical Formulation 

The objective function is given by the following equation 

F = min ^ ^ xid (4.1) 
{i€ll} {d&D} 

which represents the number of sensors in the sensor field. The goal is to minimize 

this function while satisfying a set of constraints and requirements. 

The first constraint is captured by the following inequality 

J 2 Xid < 1 V i e n (4.2) {d€D} 

which states that a sensor can be oriented toward one direction only. The coverage 
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requirement is represented by the following inequality 

E E • ^ 1 v j e n (4.3) 
{ien} {deD} 

which states that a control point must be covered by at least one sensor. A control 

point is assigned to a sensor only if it can be covered by one of its possible directions. 

A wireless link is established between two placement sites if two sensors are in-

stalled at those sites and they can communicate with each other. This is ensured by 

the following constraint. 

I E E v M e n ^ i (4.4) \{deD} {deD} J 

Similarly, a wireless link can be established between the base station and a place-

ment site only if there is a sensor installed at that site and it can communicate with 

the base station. This is ensured by the following constraint. 

y? < Hb • E v i e n (4-5) 
{den} 

Flow constraints are introduced into the model to ensure the resulting network is 

connected. Since the base station does not generate any traffic, only flows between 

placement sites and between placement sites and the base station are considered. The 

following constraint is generated for every placement site. 

Ri E Xid + E / " = E fl+f* v i e n (4-6) 
{deD} {len-i^i} {leu-i^i} 

The following constraints are the capacity constraints. They ensure that the 
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capacity of the wireless links and nodes is not exceeded. 

fil<Cu-y{1 V (4.7) 

f f < c i b - y * V i Ell (4.8) 

J ] fil < cmax • J2 x« V i en (4.9) 
{Ien;i^i} {deD} 

The last two constraints respectively indicate that decision variables are binary 

and flow variables are positive integer. 

xid,yll,y?e B V j e ft; d e D; i, l e n ; I (4.10) 

fil,r2
be N + V i j e u - t ^ l (4.11) 

The number of variables in the above ILP model is 0( | I I | ( |D| + |II|)) and the 

number of constraints is 0( | I I | 2 + |f2|). 

4.1.2 Numerical Results 

In this section, we present preliminary results to assess the performance of the ILP 

model. The model is implemented using CPLEX 10.1.1 (see [58] for more details 

about CPLEX). For the computing platform, we used a Unix workstation equipped 

with a 3 GHz CPU and 1 GB memory. 

First, since the proposed ILP model is a generalization of the grid coverage prob-

lem and the isotropic MSP, we used it to solve the grid coverage problem presented 

in [19], [20] and [21]. For this case, sensors are isotropic (i.e. the FOV is set to 360°) 

and only the coverage is considered. As a result, the grid ILP model is simply com-

posed of the objective function (equation (1)) and the first and second constraints 

(inequalities (2) and (3)). 
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Table 4.1: Percentage of reduction and runtime for the grid coverage problem. 

Grid Size #Grid Points ^Sensors %Reduction Runtime (sec.) 
9 x 9 81 12 85.12 0.55 

10 x 10 100 14 86 1.57 
11 x 11 121 16 86.78 1.83 
12 x 12 144 18 87.5 6.13 
13 x 13 169 20 88.16 26.5 

Table 4.1 shows the results. The first column is the grid size. The second column 

is the number of grid points. This number is also the number of placement sites 

and control points in the sensor field. The next three columns respectively give the 

number of sensors needed to cover the control points, the percentage of reduction with 

respect to the initial number of placement sites and the runtime of the ILP model. 

Secondly, we evaluate the effect of the number of placement sites on the runtime 

of the ILP model. We also evaluate the percentage of reduction in the number of 

sensors required to cover all the control points. There are 50 control points that need 

to be covered and one base station where all the traffic must be sent. Each sensor has 

four directions (i.e., FOV = 90 degrees), a transmission range of 10m and a sensing 

range of 6m. The node capacity of each sensor is 40 Kbps and the link capacity of 

each wireless link is 10 Kbps. The rate of data generation is 512 bps for each sensor. 

For each problem instance, the locations of control points, placement sites and base 

station were uniformly generated for a sensor field of size 20m x 20m. For each 

number of placement sites, five instances of the problem were randomly generated 

and the average was calculated. 

Table 4.4 shows the results. The first column indicates the number of possible 

placement sites in the sensor field. The next three columns respectively represent 

the minimum number of sensors required in order to cover the 50 control points, the 

percentage of reduction with respect to the initial number of placement sites and the 

runtime of the model. 
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Table 4.2: Percentage of reduction achieved by the ILP model along with the runtime. 

#PSs ^Sensors %Reduction Runtime (sec.) 
30 14 53.33 0.31 
40 14 65 1.36 
50 13 74 3.77 
60 13 78.33 3.97 
70 12 82.86 8.58 
80 12 85 17.13 
90 12 86.67 23 
100 12 88 50.18 
150 11 92.67 99.12 
200 11 94.5 503.61 

As can be seen from Table 4.4, the execution time is increasing with respect to 

the problem size. Even with 200 potential placement sites, CPLEX only took, on 

average, 504 seconds. We can conclude that CPLEX is quite fast to solve large size 

instances of the problem. We also noticed that, from one instance to another, the 

execution time is variable. This can be explained by the fact that CPLEX is using 

the branch and bound algorithm. As far as the reduction in the number of sensors is 

concerned, we can see that as the number of potential placement sites increases, the 

reduction percentage also increases. Since more placement sites are available, better 

locations can be selected. As a result, one sensor node will be able to cover more 

control points, thus reducing the total number of sensors. 

Next, the number of placement sites is fixed at 50 and the FOV is varied. Table 4.3 

shows the results. The first column gives the size of the FOV in degrees. The second 

column gives the number of directions which a sensor can take for the corresponding 

FOVs. The last column gives the number of sensors necessary to cover the control 

points. For each FOV, five instances of the problem were randomly generated and 

the average was calculated. 

Clearly, as the size of the FOV decreases, more sensors are needed to cover the 

same set of control points. For example, with FOV = 45°, 20 sensors are needed, 
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Table 4.3: Number of sensors required for different FOVs. 

FOV (degrees) ^Directions #Sensors 
360 1 5 
180 2 9 
120 3 12 
90 4 12 
72 5 13 
60 6 17 
45 8 20 
36 10 19 
20 18 26 
12 30 25 
5 72 30 

compared to 5 when FOV = 360°. The time and memory required to solve the ILP 

model also increase when the size of the FOV decreases. 

Finally, the relationship between the sensing range and number of sensors is stud-

ied. The FOV is fixed at 90°. Figure 4.2 shows that as the sensing range increases, 

less sensors are needed to cover the same number of control points. This behavior is 

as expected since a given sensor node can cover more control points. 

4.2 Minimum Cost Sensor Placement 

The MCSP is another fundamental problem in the planning of directional WSNs. In 

this problem, the goal is to minimize the overall cost of the WSN by appropriately 

selecting sensors from a set of different sensor types. Each sensor type is characterized 

by its cost, FOV and set of directions. Each control point must be covered by at least 

one sensor and the resulting network must be connected. 
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Figure 4.2: Number of sensors required for different sensing ranges. 

4.2.1 Mathematical Formulation 

The objective function is given by the following equation 

{ k e f } {ien} {deDk} 

which represents the total cost of sensors. The goal is to minimize this function 

subject to a set of constraints and requirements. 

A type-A: sensor installed at a placement site can be oriented toward one direction 

only. This requirement is represented by the following inequality. 

E E 4i<i v ien (4.13) 
{fee*} {deDk} 

A control point can be assigned to a type-A; sensor only if it can be covered by one 
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of the directions of that sensor. This is represented by the following inequality. 

4 < £ a f c - eg 1 V ieu-jen-ke^ 
{d€Dk} 

(4.14) 

A control point must be covered by exactly one sensor. This requirement is given 

by the following equation. 

E E 4 = 1 v e Q 

{ien} {fce<£} 
(4.15) 

This equation can be changed to one that ensures each control point is covered by a 

minimum number of sensors. 

The following eight constraints are similar to the last eight constraints in the 

formulation for the MSP problem. 

il ^ yf < y E E E E : 

{fce<£} {deDk} {he®} {deDk} 
id (4.16) 

ylb 
E {fee®} {d€Dk} 

xid v i e n 

^ E E E f i = E v * e n 

{fce^} {deDk} {l&u-l^i} {/eiwo 
fil<Cn-yh v M e n ^ l 

f f < Cib • y t V i e n 

E f l <CmaX- E E ^ V ? G 11 

X k,aLy?,y$ e B V i, I e II; I- j e ft; k e d e Dk 

{fce*} {deDk} 
idi u i j 

fil,f2
be N+ v i , ! e n ; i / i 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 
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4.2.2 Numerical Results 

The ILP model is implemented using CPLEX 10.1.1 (see [58] for more details about 

CPLEX). All of our experiments are performed on a UNIX workstation equipped 

with a 3 GHz CPU and 1 GB memory. 

In the first set of experiments, we evaluate the effect of the number of placement 

sites on the runtime of the ILP model. We also evaluate the percentage of reduction in 

the number of sensors required to cover the control points. The experiments are setup 

as follows. Locations of control points, placement sites and sink node are uniformly 

generated for a sensor field of size 100m x 100m. There are two sensor types, 30 

control points and one sink node where all the traffic must be sent. A type-1 sensor 

costs $20 and has a 20m sensing range, 45° FOV and eight directions. A type-2 sensor 

costs $40 and has a 50m sensing range, 60° FOV and six directions. The transmission 

range and node capacity of all sensor types respectively are 25m and 40 Kbps. The 

link capacity of each wireless link is 10 Kbps. The rate of data generation is 512 bps 

for each sensor. 

Table 4.4 shows the results for the experiments. The first column indicates the 

number of possible placement sites in the sensor field. The number of sensors from 

each type is respectively shown in the second column for type-1 and third column for 

type-2. The fourth column gives the minimum total number of sensors required to 

cover the control points. The next three columns respectively represent the percentage 

of reduction with respect to the initial number of placement sites, total cost of sensors 

and runtime of the ILP model. For each problem size (i.e. number of placement sites), 

five instances of the problem were randomly generated. 

As can be seen from Table 4.4, the execution time is increasing with respect to 

the problem size. Even with 200 potential placement sites, CPLEX only took 372 

seconds. We can conclude that CPLEX is quite fast to solve large size instances of the 

problem. We also noticed that, from one instance to another, the execution time is 
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variable. This can be explained by the fact that CPLEX is using the branch and bound 

algorithm. As far as the reduction in the number of sensors is concerned, we can see 

that as the number of potential placement sites increases, the reduction percentage 

generally increases. Since more placement sites are available, better locations can be 

selected. As a result, one sensor node will be able to cover more control points, thus 

reducing the total number of sensors. 

To illustrate the viability of the ILP model, we show the details of the solution 

for a problem instance with 70 placement sites. Seven sensors are required to cover 

the 30 control points in the sensor field. Table 4.5 gives the placement sites where 

these sensors are to be installed. It also gives the type and direction for each sensor. 

Figure 5.1 shows the network layout. 

Consider, for example, the sensor installed at placement site 54. It is of type 2. 

In this type, a sensor has a FOV of 60°. The direction vector of this sensor is at an 

angle of 150° with the positive x-axis. The sensing region of the sensor is delimited 

by a sector. 

The solution for this problem instance contains seven wireless links which are 

established to carry traffic from the sensor nodes to the sink node. They are shown 

by the bold arrows in Figure 5.1. The routing scheme is 6 —> 29 —> 54 —> 55 —>• 11 

5 ->• 14 ->• SINK. The total traffic delivered to the sink node is 3584 bps. 

For the second set of experiments, the number of placement sites is fixed at 50 

and the number of control points is varied. For each number of control points, five in-

stances of the problem were randomly generated and the average cost was calculated. 

We briefly discuss the results. 

Our main observations are the following. First, as the number of control points 

increases, the sensor cost increases. This behavior is as expected since the directions 

of the existing sensors may not cover the newly added control points. Therefore, more 

sensors are added to the sensor field. Secondly, when the number of control points 
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Table 4.4: Percentage of reduction achieved by the ILP model along with the runtime. 

# #Sensors % Cost Runtime 
PSs Type-1 Type-2 Total Reduction ($) (sec.) 
40 1 5 6 85 220 4.26 
50 3 5 8 84 260 4.93 
60 3 5 8 86.67 260 11.71 
70 2 4 6 91.43 200 20.43 
80 1 6 7 91.25 260 33.12 
90 1 5 6 93.33 220 49.31 
100 1 5 6 94 220 71.72 
150 6 6 12 92 240 209.61 
200 3 5 8 96 260 372.17 

Table 4.5: Placement sites, sensor types and directions of sensors used in the solution 
for the example problem instance with 70 placement sites. 

Sensor Placement Site Type Direction (degrees) 
1 5 1 22.5 
2 6 1 292.5 
3 29 1 202.5 
4 11 2 30 
5 14 2 330 
6 54 2 150 
7 55 2 210 

reaches a certain threshold (500 in our experiments), the number of placement sites 

becomes insufficient. That is, even if a sensor is installed at every placement site, 

the resulting set of directions would not be enough to cover all the control points. 

Therefore, more placement sites must be introduced into the floorplan of the sensor 

field. 

4.3 Conclusions 

In this chapter, two optimization models were proposed for minimizing the number of 

directional sensors and their cost. The solution produced by both models represent a 

WSN which is connected and covers all control points in the sensor field. The model 
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Figure 4.3: Network layout produced by the ILP model for the example problem 
instance in Table 4.5. 

for the MSP problem is a generalization of the classical grid coverage problem and the 

coverage problem with isotropic sensors. The experimental results show that CPLEX 

is quite effective for solving large size instances of the MSP and MCSP problems. 
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Chapter 5 

Optimal Sensor Configuration 

5.1 Mathematical Formulation 

The objective function of the OSC problem is given by the following equation: 

F = min{CN + CB} (5.1) 

where 

C * = E E ( c + c ^ + c / ^ / ) E 
{ses} {feF} {deD} {ien} 

and 

° b = E Ck E xb-

{fee^} {beB} 
The first term (CV) is the cost of sensor nodes. The cost of a single directional 

sensor is determined by its sensing range and FOV and the sensor base cost. The 

second term (C#), however, accounts for the cost of base stations which is determined 

by their number and type. The goal is to minimize this function subject to the 

following set of constraints and requirements. 

A control point j e Q is covered by a sensor installed at a placement site i G II if 
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the following two constraints are satisfied. 

{SGS} {f<aF}{deD} {d€D} 
v 

E ' / E ' f ' ^ - ' f e ^ U (5-3) {feF} {seS} \ll«yll2/ 
V i ell]j en;d e D 

Constraint (5.2) states that the sensing range assigned to the sensor must be 

greater than or equal to the Euclidean distance between the sensor and control point. 

Similarly, constraint (5.3) states that the FOV and direction assigned to the sensor 

must be such that the control point lies in the range of vision of the sensor. 

Each control point must be covered by at least one sensor. This is ensured by the 

following two constraints. 

E E 4 ^ 1 V j G f i (5.4) {ien} {d<=D} 

a i < E E x ' i d V i e n; j € d € D (5.5) {s€S}{/£F} 
The following two constraints respectively ensure that at most one sensor and one 

base station can be installed at any placement site and base station location. 

E E E < f d ^ 1 v * e n (5-6) {seS} {/eF} {deD} 

Xk
h < 1 V b e B (5.7) 

{fcet} 

A wireless link can be established between two placement sites if two sensors are 
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installed at those sites and they can communicate with each other. This is ensured 

by the following constraint. 

2 / i < f ( z E E * * / d + E E v M e n ; ^ i (5.8) V {seS} {feF} {deD} {seS} {feF} {deD} J 

Similarly, a wireless link can be established between a placement site and a base 

station location if they contain a sensor and base station, respectively. Besides, 

the Euclidean distance between the two locations must be less than or equal to the 

reception range of the installed base station. These are ensured by the following 

constraint. 

y 2 b k < Y [ E E + v ien;beB;ke* (5.9) 
V { S € S } {feF} {deD} / 

Flow constraints are introduced into the model to ensure that the resulting net-

work is connected. Since the base station does not generate any traffic, only flows 

between placement sites and between placement sites and base station locations are 

considered. The following constraint is generated for every placement site. 

^ E E E x i f d + E / " = E / f + E / 2 6 V i e n (5.10) {seS} {feF} {deD} {len-i^i} {len-i^i} {6eB} 

The following constraints are the capacity constraints. Constraints (5.11) and 

(5.12) ensure that the capacity of the wireless links is not exceeded. On the other 

hand, constraints (5.13) and (5.14) respectively ensure that the capacity of sensors 

and base stations is not exceeded. 

fil<Cu-yf V M e n ^ I (5.11) 

tth<Cib- E VT V ieU;beB (5.12) 
{kef} 
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E / ? + E ^ < c ^ - E E v (5-13) 
{len-i^i} {b<=B} {seS} {feF} {deD} 

E f2< E V be B (5.14) 
{ien} {feef} 

The last two constraints respectively indicate that decision variables are binary 

and flow variables are positive integer. 

xf^xta^y^y™ eB V i, I e II; Z; b e B; k e t ; (5.15) 

j eQ;de D;s e s-,f e F 

fi\fl2 e N+ V ell-i^l-beB (5.16) 

The above formulation has 0(|II| |S , | |F||Z)|) variables and 0(|ft| |II| |Z)|) constraints. 

5.2 Numerical Results 

In this section, we present numerical results to assess the performance of the ILP 

model which is implemented using CPLEX 10.1 [58]. For the computing platform, 

we used a Unix workstation equipped with a 3 GHz CPU and 1 GB memory. For 

each problem size (i.e. number of placement sites and number of control points), five 

instances of the problem were randomly generated and the average was calculated. 

First, we study the effect of the number of placement sites and control points 

on the runtime of the ILP model and the percentage of reduction in the number of 

sensors required to cover the control points. The experiments are set up as follows. 
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Locations of control points, placement sites and base stations are uniformly generated 

for a sensor field of size 100m x 100m. Each sensor has a transmission range of 30m. 

The node capacity of each sensor is 10 Kbps and the link capacity of each wireless 

link is 5 Kbps. The rate of data generation is 1 Kbps for each sensor. 

In order to speed up computation time, only two possible locations are available 

for the base stations. There are three types of base stations. They are characterized 

by their cost, capacity and coverage. They are as follows: 

• Type 1 = {$500, 10 Kbps, 25m}, 

• Type 2 = {$1200, 15 Kbps, 50m}, and 

• Type 3 = {$2000, 20 Kbps, 80m}. 

The sets of possible FOVs, directions and sensing ranges are as follows: 

• F = {45°, 90°, 180°}, 

• D = {90°, 180°, 270°, 360°}, and 

• S = {5m, 10m, 15m, 20m}. 

The base cost of a sensor is set to $100. The costs of lm of sensing range and 1 

degree of FOV are set to $0.1 and $0.2, respectively. 

Table 5.1 shows the results for the experiments. The number of control points is 

shown along the top of the table. The number of placement sites is shown on the 

left side. For each combination of placement sites and control points, the table shows 

the number of sensors needed to cover the control points, percentage of reduction 

with respect to the initial number of placement sites, cost of the sensor network and 

runtime of the ILP model. 

As can be seen from Table 4.4, the execution time is increasing with respect to 

the problem size. This is as expected since the complexity of the problem grows with 
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Table 5.1: Percentage of reduction achieved by the ILP model along with the cost 
and runtime. 

No. of Control Points 
30 50 70 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

20 

^Sensors 9 9 8 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

20 %Reduction 55 55 60 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

20 Cost ($) 2031 2065 1974 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

20 

Runtime (sec.) 14 67 177 
N

o.
 o

f 
Pl

ac
em

en
t 

Si
te

s 

40 

^Sensors 12 14 17 
N

o.
 o

f 
Pl

ac
em

en
t 

Si
te

s 

40 %Reduction 70 65 57.5 
N

o.
 o

f 
Pl

ac
em

en
t 

Si
te

s 

40 Cost ($) 2481 2730 3083 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

40 

Runtime (sec.) 30 91 263 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

60 

#Sensors 11 14 16 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

60 %Reduction 81.7 76.7 73.3 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

60 Cost ($) 2389 2745 3015 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

60 

Runtime (sec.) 295 344 354 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

80 

#Sensors 11 13 15 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

80 %Reduction 86.2 83.8 81.2 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

80 Cost ($) 2420 2664 2911 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

80 

Runtime (sec.) 3678 3486 3340 N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

100 

#Sensors 9 13 14 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

100 %Reduction 91 87 86 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

100 Cost ($) 1633 2670 2817 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

100 

Runtime (sec.) 5333 6731 8468 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

200 

#Sensors 11 12 13 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

200 %Reduction 94.5 94 93.5 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

200 Cost ($) 2380 2583 2704 

N
o.

 o
f 

Pl
ac

em
en

t 
Si

te
s 

200 

Runtime (sec.) 25476 26505 30826 

the number of placement sites and the number of control points. Another interesting 

aspect is that the number of placement sites, the cost of the network and the reduction 

percentage are closely related. In fact, if the number of placement sites increases, the 

total cost of the WSN will generally decrease (up to a certain limit) and the reduction 

percentage will increase. This can be explained by the fact that since more placement 

sites are available, better locations can be selected. As a result, a given sensor node 

will be able to cover more control points, thus reducing the total number of sensors. 

On the other hand, increasing the number of control points leads to a slight increase 

in the number of sensors and thus cost. 
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Figure 5.1: Network layout of the WSN produced by the ILP model for a 40 placement 
sites and 30 control points instance of the OSC problem. 

To illustrate the viability of the ILP model, we show the details of the solution 

for a 40 placement sites and 30 control points instance of the OSC problem. Eleven 

sensors are required to cover all the control points in the sensor field. Two base 

stations of type one need to be installed at locations two and three. Figure 5.1 shows 

the network layout of the WSN produced by the model. The arrows indicate the 

directions of the sensors. 

5.3 Conclusions 

The total cost of directional sensor networks can be reduced by appropriately choos-

ing base station type and adjusting sensor parameters. These parameters include the 

sensing range, field of view and direction. In this chapter, we have described the opti-

mal sensor configuration problem and proposed an integer linear programming model 
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for it. The experimental results show that using the proposed model, a significant 

reduction in the number of required sensors can be achieved. Also, they show that 

the runtime of the model increases with the number of placement sites and control 

points. The number of possible locations for base stations also adds to the runtime. 
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Chapter 6 

The Biosensor Thermal 

Management Problem 

Biosensors are tiny wireless devices which are attached or implanted into the body of 

a human or animal to monitor and control biological processes. Biosensors are energy-

as well as temperature-constrained. Also, their sensing elements are made from biolog-

ical materials. In this chapter, the Biosensor Thermal Management (BTM) problem 

is first described. Then, the background information necessary to understand the 

optimization models presented in the next chapters is given. 

6.1 Problem Description 

A biosensor typically contains four essential components (see Figure 6.1): biorecog-

nition, transducer, radio and battery. The biorecognition system is made of elements 

such as enzymes and antibodies whose role is to produce a physio-chemical change 

which is detected and measured by the signal transducer. The transducer carries 

out signal processing tasks. The radio circuitry is responsible for wireless commu-

nication. The battery provides power for all active modules in the biosensor and is 

recharged using RF energy. During a recharging period, the biosensor uses its radio 

49 



Biorecognition 
Elements 

RF Signals 

Figure 6.1: Components of a biosensor. 

module to collect energy and recharge the battery. Therefore, while its battery is 

being recharged, the biosensor cannot perform sensing and communication. 

The location of a biosensor implanted into the body of a human or animal rep-

resents a critical point since it experiences the maximum temperature increase. The 

tissues surrounding the biosensor might even be heated continuously due to the lo-

cal radiation generated by the biosensor itself and the radiation generated by its 

neighbors. The biosensor becomes incapable of detecting and reporting events if the 

increase in its temperature exceeds the maximum safe temperature level. This con-

dition causes a halt in system operation to allow the system to cool down. The BTM 

problem is concerned with finding optimal policies for operating biological WSNs in 

order to mitigate the thermal effect on the tissues surrounding the biosensors. 

There is a gap in the current knowledge about biological WSNs. For example, 

most of the existing works on WSNs assume that energy is the only limiting factor 

in the operation of WSNs. However, this is not the case in biological WSNs where 

the increase in temperature is an additional serious limiting factor. In addition, the 
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interplay between the initial energy a biosensor has, its temperature and the state of 

the wireless channel are not yet characterized. 

6.2 Calculating Temperature Increase 

RF signals used for wireless communication and recharging of implanted biosensors 

produce electrical and magnetic fields. When a human gets exposed to electromag-

netic fields, the absorbed radiation gets converted into heat which manifests itself 

as a temperature increase inside the tissues. This phenomenon is balanced by the 

human thermoregulatory system. If the generated heat is larger than what can be 

drained, the temperature of the tissues will rise. The tissues might be damaged if the 

generated heat cannot be regulated by the blood circulation system. 

The level of radiation absorbed by the human body when exposed to RF radiation 

is measured by the Specific Absorption Rate (SAR) which is expressed in units of 

W/Kg. SAR records the rate at which radiation energy is absorbed per unit mass of 

tissue [59]. The mathematical relationship between SAR and radiation is given by 

S A R = ( 6 . 1 ) 
P 

where E is the induced electric field due to radiation and p and a are the density and 

electrical conductivity of the tissue, respectively. As an example to appreciate the 

importance of this measure, it was reported in [60] that an exposure to a SAR of 8 

W/Kg in any gram of tissue in the head for 15 minutes may result in tissue damage. 

SAR is a point quantity. That is, its value varies from one location to another. 

In this paper, we consider only the SAR in the near field (i.e., the space around the 

antenna of the biosensor). The near field radiation due to the antenna of the biosensor 

causes the heating of the tissue surrounding the biosensor. SAR in the near field is 

used to estimate this effect. The extent of the near field is given by d0 = where 
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A is the wavelength of the carrier signal used in wireless communication. SAR in the 

near field is given by the following equation [61]: 

where p and e are the permeability and permittivity of the tissue, respectively, dl 

is the length of the wire representing the antenna, I is the current provided to the 

antenna, a is the attenuation constant, R is the distance from the biosensor to the 

observation point, 6 is the angle between the observation point and the x-y plane, 

7 is the propagation constant and ui is the angular frequency. We assume that the 

radiation patterns are omnidirectional on the 2D plane and thus sin# = 1. 

The Pennes's bioheat equation [62] is the standard for calculating the temperature 

increase in the body due to heating. The general form of the equation is 

where p is the mass density, Cp is the specific heat of the tissue, is the rate of 

temperature increase, K is the thermal conductivity of the tissue, b is the blood 

perfusion constant which indicates how fast the heat can be taken away by the blood 

flow inside the tissue and Tb is the temperature of the blood and the tissue. The terms 

on the right side indicate the heat accumulated inside the tissue. The terms K \/2T 

and b(T — Tb) are the heat transfer due to the thermal conduction and the blood 

perfusion, respectively. The terms pSAR, Pc, and Qrn are the heat generated due to 

radiation, the power dissipation of circuitry, and the metabolic heating, respectively. 

In this equation, SAR includes both the SAR in the near field and the SAR in the 

far field. 

The Finite-Difference Time-Domain (FDTD) method is a technique that trans-

forms the bioheat equation to a discrete form with discrete time and space steps [63]. 

(6.2) 

pCv— = Ks72T-b(T - Tb) + pSAR + PC + Q, (6.3) 
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The area under consideration is divided into cells of side S and the temperature is 

evaluated in a grid of points defined at the centers of the cells. Temperatures are 

computed at equally spaced time instants with a time step equal to 8t. Therefore, 

from [35], the new bioheat equation is 

where Tm+i(i,j) is the temperature of cell (i,j) at time m +1 , St is the time step and 

S is the space step. 

Using (6.2) and (6.4), the temperature increase at the location of the biosensor 

((i. j ) ) can be found. It is assumed that the temperature of the surrounding cell 

points is the normal body temperature (i.e., 37°C). 

A simplified scheme to estimate the possible temperature increase was proposed 

in [35]. It is referred to as the Potential Temperature Increase (TIP). Basically, the 

temperature increase of any biosensor depends on two parameters: 

1. The Euclidean distance from the currently transmitting biosensor and 

2. The time elapsed since the last transmission made by the currently transmitting 

Clearly, the larger the values of these two parameters, the smaller the temperature 

increase is. On the other hand, a smaller Euclidean distance between biosensors i and 

j indicates that they have more influence on the temperature increase of each other. 

Also, if biosensor j follows biosensor i in the transmission schedule, then after being 

heated by by biosensor i, biosensor j becomes the transmitting node and further heats 

(6.4) 

+ 5 t K [ Trn(i + lJ)+Tm(i,j + l) 

PCpS2l+Tm(i-l,j)+Tm(i,j-l) 
+ 

biosensor. 
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the tissues surroundint it. 

The influence of the transmission made by biosensor i on the temperature increase 

of biosensor j (denoted by P l?) is a function of the Euclidean distance between biosen-

sors i and j (denoted by dij) and the distance in the transmission schedule between 

biosensors i and j (denoted by rt]). rVj is the number of transmissions which will 

occur before biosensor j makes its transmission. Thus, the mathematical expression 

for Pij is the following: 

= 7=j= -2 ^ r (6-5) 

C1 + C2y/dij + c3rfj + c4rfja + c5rfj 

The values of the coefficients are as follows: 

• ci = 14.8827 

• c2 = 8.8633 

• c3 = 3.1134 

• c4 = -1.5933 

• c5 = 0.2471 

The joint influence on one biosensor is the sum of the individual influences from 

all other heating sources. This can be expressed mathematically as follows: 
N 

i=1 

where N is the total number of biosensor. 

It should be pointed out that eqn. (6.5) is just an approximation of the possible 

temperature increase. Thus, it cannot be used to calculate the exact temperature 

increase value. 
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6.3 Markov Decision Processes 

An MDP is a model of a dynamic system whose behavior varies with time. The 

elements of an MDP model are the following [64]: 

1. System states, 

2. Possible actions at each system state, 

3. A reward or cost associated with each possible state-action pair, and 

4. Next state transition probabilities for each possible state-action pair. 

The solution of an MDP model (referred to as a policy) gives a rule for choosing 

an action at each possible system state. If the policy chooses an action at time t 

depending only on the state of the system at time t, it is referred to as a stationary 

policy. An optimal stationary policy exists over the class of all policies if every 

stationary policy gives rise to an irreducible Markov chain. This means that one can 

limit the attention to the class of stationary policies. 

An interesting class of MDPs is the class of MDPs with a terminating state. This 

state is reached with probability one in a finite number of steps. The number of steps 

represents the lifetime of the Markovian process induced by the MDP model (hence, 

the lifetime of the modeled system). The solution of the model is a policy which 

drives the system into the terminating state while optimizing an objective function 

which may include the lifetime of the system as a parameter. 

In order to obtain a policy from an MDP model, it is necessary to form and solve 

the so called optimality equation (or Bellman equation). The following is the standard 

form of this equation with the maximization operator [65]: 

Vn(s) = max 
aeA(s) L' 

f(s,a) + Y/¥(s,s',a)Vn.1(sl) , (6.7) 
s'es 

55 



where n is the iteration index, S is the set of system states (s £ S), ^.(s) is the set 

of actions possible when the system is at state s, f(s,a) is the reward/cost per step, 

P is the system state transition probability matrix and V(s) is the optimal value of 

the objective function when the system is started at state s and the optimal policy 

is followed. 

Eqn. (8.3) can be solved using the classical policy iteration, value iteration and 

relative value iteration algorithms [65]. However, these algorithms become impractical 

when the number of system states is large. In such situations, one typically resorts 

to approximate techniques such as in [66-69]. Another solution for the problem of 

state explosion is state aggregation [70-74], In this technique, using some notion of 

equivalence, equivalent states are combined into one class which is represented by a 

single state in the reduced MDP model. The reduced MDP model is equivalent to 

the original one but with significantly fewer states. 

Reinforcement Learning (RL) techniques (like Q-learning) offers an alternative 

for obtaining the optimal policy at a significantly lower computational cost. Using a 

simulation model of the system under study, the decision maker in an MDP is viewed 

as a learning agent whose task is to learn the optimal action in each possible state 

of the system. As Figure 6.2 shows, the optimal policy is learned while the system 

is being driven (i.e., simulated) by the actions selected by the learning agent which 

stores the results of its actions in a knowledge base. The actions of the decision 

maker becomes better over time as new knowledge is obtained. Eventually, the RL 

algorithm converges to an optimal policy which can be used in the physical system. 

6.4 Wireless Channel 

The communication between the biosensor and base station occurs over a Rayleigh 

fading channel with additive Gaussian noise. Hence, the instantaneous received 
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Figure 6.2: Using an RL algorithm (like Q-learning), the decision-making agent grad-
ually learns the optimal policy. An action is applied to the system or simulated and 
then the resulting reward/cost is fed back into the knowledge base of the decision 
maker. The new knowledge obtained over time helps the decision maker to make 
better actions. 

Signal-to-Noise Ratio (SNR) denoted by 7 is exponentially distributed with the fol-

lowing probability density function [75]: 

P ( 7 ) = - exp ( - ^ ) , (6.8) 
7o v 7o' 

where 70 is the average received SNR. 

Such a wireless channel can be modeled as a Finite-State Markov Chain (FSMC) 

[76,77]. The model can be built as follows. For a wireless channel with K states, 

the state boundaries (i.e., SNR thresholds) are denoted by Ti, T2, •••, T^-, IV+i where 

Ti = 0 and T^+i = 00. The channel is said to be in state Sj if the SNR is between 

Ti and r i + i where % = 1, 2, ..., K. It is assumed that the SNR remains the same 

during packet transmission and only transitions to the current or adjacent states are 
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allowed. 

The steady-state probability of the ith state of the FSMC is given by 

P(S l) = exp ( - - exp ( - ^ ± 1 ) (6.9) 
loJ v 7o 

and thus the state transition probabilities are 

P(si+i\si) ^ N{T';l)At and (6.10) 
P(SI) 

where A^Tj) is the average number of times per unit interval that the SNR crosses 

level r.t and At is the packet duration. N(Fi) can be computed using the following 

equation [78]: 

N{Ti) = y ^ T J d e - r % (6.12) 

where f,i is the maximum Doppler frequency defined as fd = j with v being the speed 

of the subject and A being the wavelength. 

The above channel model has been verified to be precise when the fading process 

is slow [76], such as in biosensor applications. 
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Chapter 7 

Heat Management Via Dynamic 

Sensor Scheduling 

7.1 System Model 

Figure 7.1 shows a BWSN consisting of three biosensors implanted into the body of 

a patient. The biosensors communicate with an access point (or base station) over 

a wireless channel. The wireless access point initiates the data collection process by 

determining which biosensor is going to transmit the next measurement. A biosensor 

is selected for transmission based on the current network state and some policy. The 

wireless access point is assumed to know the global Channel State Information (CSI) 

of the wireless channel and the state of each biosensor at each point in time. Clearly, 

the location of a biosensor represents a critical point since it experiences the maximum 

temperature increase. This is because the tissues surrounding a biosensor might be 

heated continuously due to the local radiation generated by the biosensor itself and 

the radiation generated by its neighbors. 

The setup in Figure 7.1 can mathematically be modeled as a discrete-state system 

which evolves in discrete time. Thus, the time axis is divided into slots of equal 
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Figure 7.1: A patient with three biosensors implanted into his body. 

duration AT and time t £ Z + is the time interval [tAT, (t + 1)AT). The state of the 

system represents its condition at the beginning of a time slot. Control (i.e., which 

biosensor to choose next) can only be exercised at the beginning of a time slot and 

not at any other time during the slot. The current temperature and remaining energy 

of each biosensor and the CSI of the wireless channel are used to represent the state 

of the system in Figure 7.1. The number of biosensors, on the other hand, is used 

to represent the number of possible control actions that can be used to control the 

evolution of the system. 

The system in Figure 7.1 works as follows. At the beginning of each time slot, a 

biosensor is selected by the base station to transmit its measurement. As a result, 

the energy and temperature of the selected biosensor change according to its trans-

mission energy requirement which is determined by the state of the wireless channel. 

Also, the temperature of the neighbors of the selected biosensor increases based on the 

amount of energy used in the transmission. On the other hand, the temperature of the 
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non-neighboring biosensors decreases. The change in the temperature of the biosen-

sors can be calculated using the Pennes's bioheat equation and the FDTD method. 

However, due to the large simulation time required before the temperature change 

reaches a steady state, this approach is not followed here. Instead, the temperature 

decrease is assumed to be a constant reduction which occurs whenever the biosensor 

is not transmitting and not a neighbor of a transmitting biosensor. The temperature 

increase is also assumed to be directly proportional to the energy consumed by the 

transmitting biosensor. 

Let x be the set of biosensors which have been surgically implanted in the body 

of a patient and at known locations. Also, let Tj be the set of biosensors which are 

neighbors to biosensor i. Different criteria can be used to compute this set. In this 

work, the Euclidean distance between biosensors is used. Each biosensor i E x has 

a battery with an initial energy of £0 and can withstand a maximum temperature 

increase of r units. The parameter r represents the maximum safe temperature level 

that must not be exceeded. 

In each time slot t, the state of a biosensor i is characterized by two variables 

which are the current temperature Tt(i) and remaining energy Et(i). The energy 

required for a biosensor i to successfully transmit its measurement to the base station 

is determined by the state of the wireless channel in time slot t in which the biosensor 

is scheduled. This transmission energy is a random variable that is denoted by Wt(i) 

and is independent and identically distributed over all sensors and time slots. Due 

to hardware and power limitations, Wt(i) is discretely distributed over a finite set 

{ei, e2,..., eL}, where 0 < ei < e2 < ... < eL < oo and €j is the energy consumed by a 

biosensor in transmitting its measurement at the jth power level. 

At the beginning of the next time slot, the energy level at each biosensor % is given 
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by the following equation: 

Et(i) if i^a 

Et{i)-Wt{a) if i = a 
(7.1) 

where a is the index of the sensor selected for transmission. Similarly, at the beginning 

of the next time slot, the temperature of each biosensor i is given by the following 

where J7 is a function of the transmission power and current temperature of the sensor 

scheduled for transmission and n is the amount by which the temperature of a non-

neighboring sensor decreases. The symbol | denotes the logical OR operator. It should 

be noted that the change in temperature experienced by the scheduled biosensor and 

its neighbors is assumed to be the same. 

Finally, the communication between the biosensor and base station occurs over a 

Rayleigh fading channel with additive Gaussian noise. Such a wireless channel can 

be modeled as an FSMC. Thus, the transmission energy requirement for a biosensor 

% follows a Markov chain with L states and transition probabilities P\Wt+\ ('/) = 

w'\Wt(i) = w], where w,w' e {ej}j=1. 

The purpose of the MDP formulation of the system described in the previous section 

is to find a policy 7r that prescribes the best action to take in each state of the system 

so as to maximize the long-term expected lifetime of the system which is defined as 

the number of accumulated time slots before the system enters a terminating state. 

The policy n is a stationary policy which means that it is independent of time and 

equation: 

(7.2) 

7.2 M D P Model 
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depends only on the state of the system. Next, we give the details of the MDP model. 

7.2.1 State Set 

The state of the system with |%| biosensors at time t is described by a (3 x |x|)-

dimensional vector. That is, 

a, = { (T t ( l ) , Et(l), Wt( 1)), (Tt(2), Et{2), Wt(2)),..., (7.3) 

(Tt(\x\),Et(\x\),Wt(\x\))} 

Let S be the set of possible system states. Then, the number of possible system 

states is \S\ = |T|W x \E\M x where \T\, \E\ and \W\ are the numbers of 

possible temperatures, residual energies and transmission energy levels, respectively. 

The system enters a terminating state when any one of the following two conditions 

is true: 

i) Temperature of any biosensor i is harmful (i.e., Tt(i) > r , where r is an upper 

limit on the allowed temperature increase), and 

ii) A biosensor i cannot transmit its measurement due to the lack of enough energy 

(i.e., Et(i) < Wt[i)). This condition also accounts for the case when Et(i) = 0. 

Once the system is in a terminating state, the system must be halted to protect 

the patient. The system can then be restored to an initial state by recharging the 

biosensors and letting them cool down. 

7.2.2 Action Set 

At the beginning of each time slot, based on the current state of the system, the 

base station chooses an action (i.e., a biosensor to transmit its measurement). The 

set of possible actions consists of the indexes of all biosensors. In other words, the 
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set of actions available in each state s which is not a terminating state is -A(s) = 

(!) 2,..., |x|}. 

7.2.3 Reward Function 

Let R(s, a) be the instantaneous reward earned by the network due to action a E A(s) 

when the system is in a non-terminating state s. Since the goal is to maximize the 

expected network lifetime, the reward function can be defined as 

which assigns a unit reward to each time slot as long as the network is in a non-

terminating state. Therefore, the expected sum of rewards obtained before the net-

work reaches a terminating state represents the network lifetime. It should be pointed 

out that the expectation is taken over all possible state sequences generated by a given 

policy. 

7.2.4 Transition Probability Function 

The behavior of the system is described by |A| jS*! x |,.9| transition probability matrices. 

Each matrix is denoted by PSt;St+1(a) which is the probability that choosing an action 

a when in state st will lead to state s t + i . More formally, PSt,s t+i(a) c a n be rewritten 

as follows: 

where k is the index of the biosensor selected for transmitting its measurement. 

R{s,a) = 1 

(7.4) 

x P[Et+1(i)\Et(i),Wt(i),a = k] 

x P[Wt+1(i)\Wt(i)]}, x 
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The above equation can be further simplified to: 

P [ S t + 1 | S t , a = k] = J] {p[Wt+1(i)\Wt(i)]} (7.5) 

This is possible because the change in remaining energy and temperature happens 

with a probability of one for each biosensor. However, for each biosensor, the change 

in the state of the wireless channel is random. Thus, the next state transition proba-

bilities for the system under study depends only on the state transition probabilities 

of the wireless channel. 

7.2.5 Value Function 

The thermal management problem is formulated as an infinite-horizon MDP using 

the average reward criterion [64]. So, let K-(so) be the expected network lifetime 

given that the policy n is used with an initial state s0- Then, the maximum expected 

network lifetime V*(sq) starting from state so is given by 

The optimal policy 7r* is the one that achieves the maximum expected network 

lifetime at all non-terminating states. Hence, it gives the optimal sensor transmission 

schedule. 

The Relative Value Iteration (RVI) algorithm [65] is used to numerically solve the 

following recursive equation for n > 0: 

V*(s0) = max VJr(so) (7.6) 7T 

Vn (s) = max 
aGA(s) . 

R(s, a) + J2 HsuSt+u^Vn-^St+i) (7.7) 
st+ies 

In (8.8), the subscript n denotes the iteration index. As n —» oo, Vn —> V*. 
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Figure 7.2: Excerpt of the system state space showing three classes of states. 

7.3 Minimizing the Size of the MDP Model Th-

rough State Aggregation 

The large state space of the MDP model makes the computation of the optimal policy 

a highly intensive process and thus only feasible for small-scale networks. This is due 

to the storage and runtime requirements which are both function of the number of 

possible system states. State aggregation can be used to mitigate this problem. With 

this technique, the state space is partitioned and the states belonging to the same 

partition are aggregated into a single new state. Partitioning is performed by using 

some notion of equivalence between system states. The final result is a reduced MDP 

model with the same properties as the original one but significantly fewer states. 

In this work, the definition of state equivalence in MDPs introduced in [71] is 

utilized. This definition can be stated as follows. 

Definition 1. (State Equivalence [71]) 

Two states are equivalent if and only if for every action: 
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1. They achieve the same immediate reward, and 

2. They transit to the same next states with the same transition probabilities. 

For example, consider Figure 7.2 which shows an excerpt of the state space of an in-

stance of the MDP model of the system in Figure 7.1. In this case, r and £0 are both 

4. The state space has a tree-like structure in which the root is the initial state and 

the leaves are the terminating states. Two important classes of states are the class 

of terminating states and the class of final validI1 states. In the former, the states are 

equivalent since for each action, no reward is generated and the next state is the same 

as the present one with a probability of one. This class of states can be identified in 

0( |S\) time. Similarly, in the latter, the states are equivalent since for each action, a 

reward of one unit is generated and the next state is a terminating state with proba-

bility one. This class of states can be identified in 0( |5 | |x | ) time. Additional classes 

of states can be identified but they are costly to compute in practice. Therefore, we 

consider only the classes of final valid states and terminating states since they are 

not costly to compute and provide a considerable reduction in the size of the MDP 

model. 

The following theorem asserts that system states identified as final valid (termi-

nating) are equivalent and thus can be represented by a single final valid (terminating) 

state in the reduced MDP model. 

Theorem 1. The system states in the class of final valid states (terminating states) 

are equivalent. 

Proof. We provide the proof for any two system states belonging to the class of final 

valid states. The proof for any two states belonging to the class of terminating states 

is the same. 
l r rhe name is just a convention to indicate that the final working state of the system before 

entering a terminating state always belongs to this class of states. 

67 



By definition, a valid system state is a non-terminating state. That is, it is a state 

at which each biosensor can make a transmission (i.e., all actions are possible). Also, 

by definition, a final valid system state is one at which the execution of an action 

generates a reward of one unit and causes the system to enter a terminating state. 

Since all terminating states are equivalent, the system transits to a terminating state 

with a probability of one. • 

The equivalence of the optimal policy produced by solving the reduced MDP 

model is established by the following theorem. 

Theorem 2. The reduced MDP model produced by aggregating the final valid states 

and terminating states induces an optimal policy for the original MDP model. 

Proof. Let S* be the new reduced set of system states. Also, let i and j be two 

equivalent system states such that i G S and j G S*. Using mathematical induction, 

it can be shown that i and j have the same optimal value. First, we start with the 

base case where n = 0 and V0(k) = 0 V k G S*. In this case, the optimal value 

for any state is just the reward for that state; i.e., V\(k) = ma,xaeA(k) R(k,a). Since 

states i and j are equivalent, it is implied that R(i, a) = R(j, a) V a G A and thus 

Vi(i) = Vi(j). This proves the base case. 

For the inductive case (i.e., n > 2), using the induction hypothesis, the following 

can be shown for states i and j. 

R(i, a)+ J2leSF(i, 1,0^(1) 

Vn(j) = max a 6 A ( i ) 

= maxa e A ( i ) 

= maxae^ (j) 

= Vn(i) 

This proves the inductive case. Therefore, it can now be established that any optimal 

action for state j G S* is also an optimal action for state i G S. • 
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Table 7.1: Reduction in the number of system states when terminating states and 
final valid states are aggregated, r and L are 7 and 2, respectively. 

So Total No. 
of States 

Reduced No. 
of States 

Percentage 
of Reduction 

5 884736 184319 79.17 
6 1404928 341802 75.67 
7 2097152 569849 72.83 
8 2985984 881510 70.48 
9 4096000 1289835 68.51 
10 5451776 1807874 66.84 

Table 7.1 shows the percentage reduction obtained by varying So while fixing 

r and L at 7 and 2, respectively. This considerable reduction is achieved just by 

aggregating the final valid and terminating states. Clearly, most of the system states 

fall into these two classes of system states. This can be attributed to the fact that the 

state space of the MDP model has a tree-like structure in which the number of leaf 

nodes representing terminating states is substantially large. The next substantially 

large number is the number of final valid states. 

7.4 Numerical and Simulation Results 

In this section, numerical and simulation results are presented in the context of an 

illustrative example. First, the example is described and solved numerically. Second, 

the example BWSN is simulated to compare the performance of the optimal policy 

obtained by the MDP model to that of TIP-based and most residual energy policies. 

7.4.1 Illustrative Example 

The numerical and simulation results are obtained by using the following example. 

Consider again the BWSN shown in Figure 7.1. The biosensors are indexed from one 

to three. The neighbors of each biosensor are as follows: 
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• Tx = {2} 

• X2 = {1, 3} 

• T 3 = {2} 

Also, the T function in (8.2) is defined for each biosensor i as 

F(Tt(i),Wt(a)) = Tt(i) + Wt(a). 

The channel for each biosensor is modeled as a two-state Markov chain whose state 

boundary is randomly generated. A biosensor requires k units of energy to successfully 

transmit its measurement when its channel is in state k e {1,2}. The transition 

probability matrix is the following. 

0.2 0.8 

0.6 0.4 

The MDP model of the biosensor network is solved using the RVI algorithm. The 

initial state of the network is assumed to be {(0, So, 1), (0, So, 1), (0, So, 1)}. The 

expected network lifetime is the value calculated by the RVI algorithm for the initial 

state. 

Figure 7.3 shows the expected network lifetime for different levels of initial energy 

(So) and maximum allowed temperature increase (r). For example, for r = 3 (i.e., 

a maximum temperature increase of three units is allowed), the maximum expected 

network lifetime is about 2.49. This can be achieved with an initial energy of 4 

units. As the curve for r = 3 shows, increasing the initial energy will not increase the 

expected lifetime due to the limit on the maximum allowed temperature increase. 

The initial energy of a biosensor might also become a limiting factor. For example, 

for r = 7, So limits the maximum expected lifetime over the range of initial energies 
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Figure 7.3: Expected network lifetime vs. initial energy for different values of r . 

from 2 to 6. After that, r becomes the limiting factor. In this example, the maximum 

expected network lifetime which can be achieved with r = 7 is 6.73 with an initial 

energy of 7 units. 

Another interesting issue is the amount of energy which remains in biosensors after 

the system is halted due to a high temperature increase. For example, from Figure 

7.3, it can be seen that for £Q = 4, increasing r leads to a noticeable increase in the 

expected lifetime of the network. This indicates that the amount of initial energy must 

be determined carefully. This is because an excessive amount of remaining energy 

means that the patient has been exposed to an unnecessary temperature increase 

when the biosensors implanted in his body were charged. Thus, the measurement 

process has been started on already heated organs. 

Figure 7.4 shows the actions the optimal policy makes when the remaining energy 

at each biosensor is fixed at three and the transmission energies of biosensors 1 and 

2 are both two and that of biosensor 3 is one. £Q and r are both 5. After analyzing 

the data, it is found that biosensor 3 is selected for transmission in 64% of the system 
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Figure 7.4: Optimal actions when E(l) = E(2) = E(3) = 3, W(l) = W(2) = 2 and 
W(3) = 1, T = 5 and £0 = 5. 

states since it results in the minimum temperature increase. This is obvious since 

only one unit of energy is required for a successful transmission and the size of its 

neighborhood is one. Biosensor 2 is never selected. Biosensor 1, however, is selected 

when the temperature at biosensor 3 or its neighbor (biosensor 2) is 4. This is because 

if any one of them is selected, the system will enter a terminating state. So, biosensor 

1 is selected to let biosensor 3 cool down and thus lengthen the network lifetime or 

to distribute heat evenly if the network is going to enter a terminating state. 

7.4.2 Comparative Analysis 

The BWSN in Figure 7.1 is simulated to compare the performance of the optimal pol-

icy with that of the TIP-based and most residual energy policies. Also, the impact 

of varying the initial energy and maximum safe temperature level is evaluated. The 
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Figure 7.5: Simulated network lifetime vs. initial energy for different policies. 

simulator is written in Matlab [79] and each data point is the average of 1000 simu-

lation runs. The TIP-based policy (or the optimal rotation sequence) is computed as 

described in [35]. The optimal sequence is (3,1,2). The peak potential is 0.148 and is 

experienced by biosensor 2. 

First, the impact of varying the initial energy on the network lifetime is studied. 

Figure 7.5 shows the simulated lifetime of the network when the initial energy is 

varied from 2 to 10 and r is fixed at 7. Essentially, the network lifetime increases as 

the initial energy increases. However, after a threshold (around 4), the lifetime curve 

starts to level off for all policies. This is because the limit on the maximum allowed 

temperature increase is reached. Therefore, unless r is increased, the average network 

lifetime will not increase with the increase of the initial energy. 

Figure 7.5 also shows that the optimal policy outperforms the other two policies. 

The TIP-based policy performs the worst. The main reason for its poor performance 

is that the TIP-based policy does not account for the effects of the wireless channel. 

On the other hand, the policy based on the most residual energy performs better than 
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Figure 7.6: Simulated network lifetime vs. maximum safe temperature level for dif-
ferent policies. 

the TIP-based policy. This is because it always chooses the sensor which consumes 

the least amount of energy for transmission. Hence, the gap between its curve and 

that of the optimal policy is smaller. Nevertheless, its performance cannot reach the 

performance of the optimal policy since temperature is not considered explicitly. 

Figure 7.6 shows the impact on the network lifetime when fixing the initial energy 

at 5 and varying the upper limit on the safe temperature level from 2 to 10. As 

expected, the network lifetime increases as r increases. The optimal policy clearly 

gives the best network lifetime. The policy based on most residual energy gives the 

next best network lifetime. The worst network lifetime is achieved by the TIP-based 

policy. Compared to Figure 7.5, Figure 7.6 tells that with £0 = 5, longer lifetime can 

be achieved if r is increased. This indicates that r has more impact of the lifetime of 

the network. 

The performance of the three policies in terms of temperature increase is compared 

next. The initial energy is fixed at 8Q = 7. The temperature at biosensor 2 is chosen as 
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Figure 7.7: Temperature at biosensor 2 for different policies. 

a metric. This is because biosensor 2 belongs to the neighborhoods of both biosensors 

1 and 2. Thus, it might be heated continuously. 

Figure 7.7 shows the temperature at biosensor 2 over four time slots. As expected, 

the TIP-based policy gives the maximum temperature increase. A closer examination 

of the simulation data reveals that biosensor 2 has indeed been continuously heated. 

This in turns leads to a larger temperature increase and thus shorter lifetime since 

the maximum allowed temperature is approached very fast. Both the most residual 

energy and optimal policies give a significant improvement over the TIP-based policy. 

The performance of the two policies is slightly the same over the first two time slots. 

Then, the optimal policy shows a lower temperature increase over the remaining time 

slots. 

The above observation is very interesting since the goal of the TIP-based policy is 

to give a minimal temperature increase rotation sequence. However, since the wire-

less channel and its dynamics are not taken into account, the precomputed rotation 

sequence will most probably lead to a larger temperature increase when implemented 
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in practice. 

7.5 Conclusions 

The work in this chapter is one step further in understanding the thermal management 

problem in BWSNs. The thermal management problem is modeled as an MDP and 

then solved to obtain the optimal operating policy for the network. Further, the 

aggregation of final valid and terminating system states is proposed as a way for 

minimizing the number of states in the proposed MDP model. The equivalence of 

the reduced MDP model is established. Also, numerical results show a substantial 

reduction in model size which is obtained by aggregating just two types of system 

states. The optimal policy produced by the MDP model outperforms the policies 

based on the most residual energy and temperature increase potential. This is because 

the optimal policy gives the best balance between transmission energy consumption 

and the resulting temperature increase. 
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Chapter 8 

Maximizing the Average Number 

of Samples Generated by a 

Rechargeable Biosensor 

8.1 System Model 

Figure 8.1 shows the system under study where a mobile subject, in this case an 

animal, has a biosensor implanted into its body. The biosensor has a built-in battery 

which is recharged by an RF power source. The role of the biosensor is to monitor 

and report interesting physiological events such as heart rate and blood pressure. 

The biosensor becomes incapable of detecting and reporting events if it does not have 

enough energy for transmission under any channel condition or the increase in its 

temperature exceeds a prespecified threshold. The latter condition causes a halt in 

system operation to allow the system to cool down. 

Both the biosensor and RF power source are under the control of the base station 

which initiates the measurement process. The base station generates three control 

signals: Sleep and Sample targeted at the biosensor and Recharge targeted at the RF 
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Figure 8.1: Setup of the system under study. 

power source. The system state information is assumed to be available to the base 

station before it generates a control signal. 

Mathematically, the system can be modeled as a discrete-state system which 

evolves in discrete time. Therefore, the time axis is divided into slots of equal dura-

tion At. At the beginning of each time slot, the state of the system is observed and 

a control signal is generated by the base station accordingly. Each time slot is long 

enough to transmit a complete packet carrying a measurement. 

The location of a biosensor represents a critical point since it experiences the 

maximum temperature increase. This is because the tissues surrounding the biosensor 

might be heated continuously due to the local radiation generated by the biosensor 

itself and the radiation generated by the base station while recharging the biosensor. 

In each time slot t, the state of the biosensor is characterized by two variables which 

are the current temperature Tt and energy level Et. There are r + 1 safe temperature 

levels; i.e., Tt e {0,1, . . . , r} where the zero temperature level represents the normal 
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body temperature and r is an upper limit which must not be exceeded. Initially, the 

biosensor has a total energy of So which is also the capacity of its battery. The energy 

required for the biosensor to successfully transmit its measurement to the base station 

is determined by the state of the wireless channel at the time of transmission. This 

transmission energy is denoted by £Wi, where wt is the ith state of the wireless channel. 

The temperature increase due to a transmission energy of £Wi units is denoted by TWi. 

At the beginning of each time slot, the base station may decide to recharge the 

biosensor, let it transmit its measurement or put it into sleep. The time required 

for a full recharge is random since it depends on the current temperature and energy 

levels. During this time, interesting events may occur but they will not be reported 

by the biosensor since it is being recharged. Also, the biosensor may be put into sleep 

for a random amount of time during which no measurements can be produced. 

At the beginning of the next time slot (i.e., t+1), the energy level at the biosensor 

is given by the following equation: 

Et if at = Sleep 

Et — £Wi if at = Sample (8 .1) 

Et + £r if <h = Recharge 

Et+1 = 

where at is the action taken by the base station at time t and £r is the amount of 

energy gained by the biosensor. Similarly, the temperature of the biosensor at t + 1 

is given by the following equation: 

max{Tt — 0} if at = Sleep 

Tt+i = Tt + TWi if at = Sample (8-2) 

Tt + Tr if at = Recharge 

where % is the amount by which the temperature of the biosensor decreases when it is 

put to sleep. In the same way, Tr and Tw are the amounts by which the temperature 
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of the biosensor increases when it is recharged and when it is allowed to transmit 

its measurement, respectively. % and Tw can be calculated using eqn. (6.4). % is 

constant since the SAR due to the base station is assumed to be constant. On the 

other hand, Tw is not constant since the SAR due to the biosensor changes with the 

change in transmission energy. Therefore, before T w can be calculated, the SAR due 

to the radiation from the antenna of the biosensor is calculated using (6.2). Since 

(6.2) is a function of / , it is assumed that the current (I) corresponding to each 

transmission power level is known. 

8.2 M D P Formulation 

An MDP is a model of a dynamic system whose behavior varies with time. The 

elements of an MDP model are the following [64]: 

1. System states, 

2. Possible actions at each system state, 

3. A reward or cost associated with each possible state-action pair, and 

4. Next state transition probabilities for each possible state-action pair. 

The solution of an MDP model (referred to as a policy) gives a rule for choosing 

an action at each possible system state. If the policy chooses an action at time t 

depending only on the state of the system at time t, it is referred to as a stationary 

policy. An optimal stationary policy exists over the class of all policies if every 

stationary policy gives rise to an irreducible Markov chain. This means that one can 

limit the attention to the class of stationary policies. 

In order to obtain a policy from an MDP model, it is necessary to form and 

solve the so called optimality equation (or Bellman's equation). The following is the 
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standard form of this equation with the maximization operator [65]: 

Vn(s) = max 
a€A(s) 

f ( s , a ) + ^ P ( S , S
, , a ) V n . 1 ( s ' ) (8.3) 

where n is the iteration index, S is the set of system states (s E S), -4(s) is the set 

of actions possible when the system is at state s, f(s, a) is the reward/cost per step, 

P is the system state transition probability matrix and V(s) is the optimal value of 

the objective function when the system is started at state s and the optimal policy is 

followed. Eqn. (8.3) can be solved using the classical policy iteration, value iteration 

and relative value iteration algorithms [65]. Next, the details of the MDP model are 

given. 

The state of the system at time t is described by the following 3-dimensional vector: 

where Tt, Et and Wt are the current temperature of the biosensor, its energy level 

and transmission power required for successful transmission at time t, respectively. 

The total number of possible states is \S\ = |T| x \E\ x \W\, where |T|, \E\ and \W\ 

are the numbers of possible temperatures, residual energies and transmission energy 

levels, respectively. 

8.2.1 State Set 

st=(Tt,Et,Wt) (8.4) 
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8.2.2 Action Set 

In each time slot, the base station chooses an action based on the current state of the 

system. In each state s, there are three possible actions. 

= {Sample, Recharge, Sleep}, (8.5) 

where the Sample action lets the biosensor generate a measurement and transmit it 

to the base station, Recharge action recharges the biosensor and Sleep action puts 

the biosensor into sleep. 

The Sleep action can be performed at every system state. The other two actions, 

however, can only be performed at system states where the next temperature of the 

biosensor is within the safe temperature range. In addition, the Sample action can 

only be performed at system states where the remaining energy is sufficient to make 

a successful transmission. 

8.2.3 Reward Function 

Since the objective is to maximize the expected number of samples that can be gen-

erated by the biosensor, the reward function is defined as 

R(s, Sample) = 1. 

This means that one unit of reward is earned every time the Sample action is per-

formed. The long-run expected sum of rewards represents the average number of 

samples that can be generated by the biosensor with an initial energy of So units and 

maximum temperature increase of r units. 
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8.2.4 Transition Probability Function 

After the action taken by the base station is performed, the system transits to a 

new state according to the transition probabilities of the present state of the wireless 

channel. Thus, the behavior of the system is described by |A| transition probability 

matrices and each such matrix is of size l^l x \S\. Each matrix is denoted by PSt !!t+1 (a) 

which is the probability that choosing an action a when in state st will lead to state 

st+1. More formally, PStjSt+1(a) can be written as the following: 

8.2.5 Value Function 

The problem of finding an optimal policy for maximizing the average number of 

samples is formulated as an infinite-horizon MDP using the average reward criterion 

[64], So, let V,r(so) be the expected number of samples given that the policy 7T is used 

with an initial state s0- Then, the maximum expected number of samples V*(,so) 

starting from state SQ is given by 

The optimal policy TT* is the one that achieves the maximum expected number of 

samples at all system states. 

The famous value iteration algorithm [65] is used to numerically solve the following 

recursive equation for n > 0 

P[st+1\suat] = P[Wt+1\Wt] (8.6) 

V*(s0) = max K (so) (8.7) 71" 

max 
aeA(s) . 

R(s,a)+ ^ P ( s t , s t + i , a )K_i ( s t + i ) (8.8) 
st+ies 

In (8.8), the subscript n denotes the iteration index. As n —> oo, Vn —>• V*. 
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8.3 Handling Large-Size MDP Models 

The size of the proposed MDP model depends on the number of biosensor states which 

is a function of the number of possible temperature and energy levels. As the num-

ber of biosensor states increases, the process of computing the transition probability 

matrices for the system becomes very time consuming. Also, the value iteration al-

gorithm used for solving the MDP model becomes impractical. This section presents 

two methods (namely, Q-learning and heuristics) for handling MDP models with a 

large number of states. 

8.3.1 Q-Learning 

Reinforcement Learning (RL) offers an alternative for obtaining the optimal policy 

at a significantly lower computational cost. Using a simulation model of the system 

under study, the decision maker in an MDP is viewed as a learning agent whose task 

is to learn the optimal action in each possible state of the system. Q-Learning is an 

RL algorithm which was introduced in [80]. It is used for learning from experience. 

It requires that each entry in the decision-maker's knowledge base corresponds to a 

state-action pair. The value stored in each entry is referred to as the Q-value and is 

a measure of the goodness of executing an action in a particular system state. The 

Q-value for a state-action pair (s, a) is updated as follows: 

Q(s, a) = Q(s, a) + a * (r + 7 * max Q(s', j) - Q(s, a)) (8.9) 
jGA(s') 

where r is the immediate reward obtained after executing action a in state s, s' is 

the next state and A(s') is the set of possible actions in state s'. a and 7 denote the 

learning rate and discount factor (0 < 7 < 1), respectively. 

The Q-learning algorithm is shown as Algorithm 2. The interaction between the 

learning agent and the simulator (or environment) is divided into episodes. In each 
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Algori thm 2 The Q-Learning Algorithm 
for i = 1 to NumEpisodes do 

ps InitialState; {E.g., [0 £0 1]} 
for j = 1 to Numlter do 

if rand < 1 — e then 
a 4- m&xjeA(ps) Q{ps,j)] {rand G (0,1)} 

else 
a -f- Random(A(ps)); {Random Action} 

end if 
if a == Sample then 

r <— 1; {Reward} 
else 

r 0; 
end if 
ns SimulateAction(ps, a); 
Update(Q(ps,a)); {Using eqn. (8.9)}; 
ps = ns 

end for 
end for 

episode, the system transits through a sequence of states. The length of this sequence 

is controlled by the parameter Numlter which is the number of simulated time slots. 

In each simulated time slot, based on the current state of the system, the learner 

chooses an action either based on the e-policy or randomly. If the former is selected, 

the action with the highest Q-value is selected. After that, if the action is Sample, 

a reward of one unit is earned; otherwise, the reward is zero. The action is then 

simulated and the next system state is observed. Next, the Q-value is updated using 

eqn. (8.9). Also, the new system state becomes the current one and the cycle repeats. 

Although Q-learning is theoretically guaranteed to obtain an optimal policy, it 

requires that each state-action pair be tried infinitely often in order to learn the 

optimal policy. The quality of the learned policy depends on how much time is spent 

in learning and if every state-action pair can be tried. On the other hand, depending 

on the application, a certain percental difference between the learned and optimal 

policies might be tolerated. This is because the system states differ in the likelihood 

of being visited. Thus, a default action (like Sleep) can be assigned to system states 
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Algorithm 3 Greedy Policy 
S: Set of possible system states 

' A: Set of possible actions at each system state 

for i = 1 to \S\ do 
if Action(i, Sample) is True then 

Policy (i) — Sample 
else if Action(i, Recharge) is True then 

Policy (i) = Recharge 
else 

Policy (i) = Sleep 
end if 

end for 

with a low likelihood of being visited. 

8.3.2 Heuristic 

Since it is difficult to describe the structure of the optimal policy, a heuristic policy 

is proposed in this section. The goal is to design a policy which mimics the behavior 

of the optimal policy as close as possible. However, before presenting such a policy, 

a greedy one is given to provide insight into the design of any heuristic policy. 

The greedy policy is computed using Algorithm 3. The inputs to this algorithm 

are the set of possible system states and set of feasible actions for each system state. 

The computed policy is greedy in the sense that for each system state, the feasibility 

of actions is checked in the following order: Sample, Recharge and then Sleep. The 

first feasible action is associated with the corresponding system state. 

As will be shown by simulations in the next section, the greedy policy is poor 

since it is based on a fixed order of actions. Therefore, Algorithm 3 needs to be 

extended to allow for a dynamic selection of actions. This objective is accomplished 

by introducing two control parameters: a and /?. With these two control parameters, 

the Sample and Recharge actions are not selected in a specific order or whenever they 

are feasible. Algorithm 4 shows how the control parameters and new heuristic policy 
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Algorithm 4 Heuristic Policy 
_ S: Set of possible system states 

' A: Set of possible actions at each system state 
T a = -T 
E 

P-Ev 
for i = 1 to IS"| do 

if Action(i, Sample) is True h a < j3 then 
Policyii) = Sample 

else if Action(i, Recharge) is True & a > /3 then 
Policy (i) = Recharge 

else 
Policy(i) = Sleep 

end if 
end for 

are computed. 

The essence of Algorithm 4 is as follows. If the current temperature (denoted by 

T) of the biosensor is low and its current energy level (denoted by E) is high, then 

the condition a < (3 would more likely be true and thus the Sample action could be 

executed. However, this would not be the case when the available energy is very close 

to zero. In this case, the opposite condition (i.e., a > f$) would more likely be true 

and thus a Recharge could be performed. If neither of the two conditions is true, the 

biosensor is put to sleep and thus its temperature decreases. 

8.4 Numerical and Simulation Results 

In this section, an example is first presented to illustrate the viability of the proposed 

MDP model. Then, the performance of the optimal policy is compared to that of the 

approximate policies using simulation. The impact of various system parameters on 

the performance of the system is also evaluated. The simulation was performed using 

a simulator written in Matlab [79]. Each simulation was run for a duration of 100000 

time slots and each data point is the average of 10 simulation runs. The number of 
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Table 8.1: Values assigned to the Parameters of the Example and Q-learning algo-
rithm. 

Parameter Value 
At 0.25 ms 
fd 60 Hz 

O) 
' F T 

So 5 
O) 

' F T T 5 
d 
CD £ £ 1 , 2 
X H Tw\ 1 TU)2 1,2 

Ts 1 
% 1 

1 
BIO 
PI • i—I 
PI 

NumEpisodes 100 BIO 
PI • i—I 
PI Numlter 10000 
CD 
CO e 0.5 

I-L & a 0.2 I-L & 
7 0.1 

channel states (W) is four and the channel state boundaries are randomly generated. 

8.4.1 Illustrative Example 

In this example, a wireless channel with two states is considered. The channel state 

transition probabilities are calculated using equations (6.10) and (6.11). Table 8.1 

shows the values of the parameters involved. Figures 8.2(a) and 8.2(b) show the ex-

pected number of samples when there is no recharge and when recharge is allowed, 

respectively. The expected number of samples is expressed as a function of the max-

imum safe temperature level (r) and initial energy (£Q). The first observation is that 

if recharge is allowed, more samples are expected to be generated by the biosensor. 

In the case when recharge is not allowed, the expected number of samples is limited 

only by the amount of initial energy. This is confirmed by Figure 8.2(a) where for 

the same initial energy, the same expected number of samples is obtained when r is 

varied. 

When recharge is allowed, the maximum safe temperature level (r) plays a critical 
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(a) 

(b) 

Figure 8.2: Expected number of samples, (a) No recharge, (b) With recharge. 

role. This is due to the temperature increase caused by the recharge action. In Figure 

8.2(b), for the same initial energy, the expected number of samples increases as r is 

varied. Increasing r enables the Recharge action to be performed more often. On 

the other hand, as one would expect, if r is fixed and (£0) is varied, the expected 

number of samples slightly increases when r is small. However, when r is large (> 6), 

the maximum possible expected number of samples can be achieved when £0 is at its 

maximum value. Therefore, for this particular example, if £Q = 10, the optimal value 

for T is 6. 
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(a) (b) 

Figure 8.3: Optimal policy for r = 5 and £0 = 5. Actions 1, 2 and 3 denote Sample, 
Recharge and Sleep, respectively, (a) Policy for channel state 1. (b) Policy for 
channel state 2. 

Figures 8.3(a) and 8.3(b) show the optimal action for each possible system state. 

In Figure 8.3(a), for channel state 1, the Sample action is performed in 70% of the 

system states. The Sleep action is performed whenever the temperature reaches the 

maximum safe level (r) and the Recharge action is performed when the remaining 

energy is zero and the temperature is below r . 

By contrast, in Figure 8.3(b), for channel state 2, the Sample action is performed 

only once at the initial system state. For this channel state, due to the higher cost 

of transmission, the biosensor is put in the sleep mode most of the time. However, 

since the cost of the Recharge action is independent of the channel state, the system 

recharges itself more often to enable more samples to be generated when the wireless 

channel switches to a state with a lesser transmission energy requirement (i.e., channel 

state 1). 
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Figure 8.4: Average number of time slots needed to generate a sample when r is fixed 
at five and SQ is varied. 

8.4.2 Comparative Analysis 

In order to be able to appreciate the merit of any approximate policy, a more mean-

ingful performance criterion is needed. In this work, the average number of time slots 

needed to generate a sample is used as a criterion to distinguish between the different 

policies available to run a system. It is calculated as the total simulation time divided 

by the average number of samples generated by the system while being operated by a 

certain policy. This measure takes into account the effect of the Recharge and Sleep 

actions. 

For example, consider Figure 8.4. In this figure, r is fixed at five while £0 is varied. 

The greedy policy is very costly since it requires the largest amount of time before 

a sample can be generated. The difference in the amount of time required by the 

heuristic policy and that required by the optimal policy stays around two time slots. 
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Figure 8.5: Average number of time slots needed to generate a sample when £0 is 
fixed at five and r is varied. 

This is a 75% reduction in time when compared to the greedy policy. The Q policy 

is the best approximate policy. On average, the difference with the optimal policy 

stays around 1.1 time slots. 

Figure 8.5 shows the amount of time required to generate a sample when £0 is 

fixed at five and r is varied. In this figure, when r = 1, the greedy policy outperforms 

both the Q policy and heuristic policy. A difference of three time slots is observed. 

This can be explained as follows. In the Q and heuristic policies, the Recharge action 

can be performed in one state only (i.e., when T = E = 0). On the other hand, with 

the greedy policy, the Recharge action can be performed in more than one state (i.e., 

whenever T — 0). This, of course, leads to a reduction in the average amount of time 

needed to generate a sample. Other than that, for r > 2, the Q and heuristic policies 

are always better than the greedy policy and their performance is close to that of the 

optimal policy. 
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8.5 Conclusions 

The increase in temperature due to the heat generated by biosensors is a limiting 

factor in the operation of biosensor networks. This problem can be modeled as a 

stochastic control problem using the framework of Markov decision processes. The 

solution is an optimal policy which ensures that the maximum safe temperature level 

is not exceeded. In order to handle large-size MDP models, it is shown how Q-

learning can be used for obtaining the optimal policy. In addition, a heuristic policy 

is proposed. Its performance is comparable to that of the policies obtained by the 

MDP model and Q-learning. 
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Chapter 9 

Conclusions and Directions for 

Further Work 

In this dissertation, two kinds of WSNs were considered: (1) directional and (2) 

biological. For directional WSNs, three planning problems were identified: (1) MSP, 

(2) MCSP and (3) OSC. They were formulated as ILP models which were then solved 

to obtain directional WSNs with either the minimum number of sensors, minimum 

overall cost or optimal sensor configuration. The solutions obtained by the three 

models represent WSNs which are connected and cover all the critical sites in the 

sensor field. 

The MSP problem turned out to be a generalization of the classical grid coverage 

problem in conventional WSNs. It is also a generalization of the coverage problem 

with sensors whose sensing fields can be represented as a disk. The OSC problem 

also turned out to be a generalization of the MSP and MCSP problems. For all 

the proposed models, the experimental results showed a significant reduction in the 

number and cost of sensors necessary for deployment. 

The above models represents a foundation for further exploration. Other parame-

ters like energy consumption, reliability and fault-tolerance can easily be added to the 
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proposed models without any modifications. Also, the mobility of sensors based on 

preplanned routes can be considered. In this case, only the input data to the models 

need to be computed at each point along the preplanned routes. On the other hand, 

the proposed deterministic ILP models will not be appropriate if stochastic mobility 

models are considered. 

As for biological WSNs, two control problems were identified. The two problems 

arise when biological sensors are operated in temperature-sensitive environments like 

the human body. They were formulated as MDPs and solved to obtain optimal policies 

for operating the WSN while the constraint on the maximum safe temperature level is 

not exceeded. The effectiveness and viability of the MDP models were demonstrated 

through numerical and experimental results. Further, the policies obtained by the 

proposed models were superior when compared with published policies. 

The proposed MDP model assumes that biosensors can only communicate with 

the base station. Thus, the measurements collected by the biosensors are processed 

by the base station. Biosensors can be allowed to process the measurements and 

only the results are delivered to the base station. If inter-sensor communication is 

allowed, the set of possible actions for a biosensor will include its neighboring nodes. 

Furthermore, the communication between the biosensors must be represented by a 

different wireless channel model since it happens inside the body of the patient. 

The proposed MDP model also assumes that the decision maker (i.e., the base 

station) knows with absolute certainty the current state of the system. This is, 

however, not the case in many real-world situations where the decision maker can 

only make observations about the current state of the system. Such observations 

typically provide only incomplete information due to noise or uncertainty. In this 

case, we say that the state of the system is only partially observable. Such systems 

are modeled by paritally observable MDPs which are MDPs with an additional set of 

observations and their probability distribution at each time instant. 
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In order to handle large-size MDP models, state aggregation and Q-learning were 

used. Also, heuristics for computing approximate policies were proposed. In the case 

of state aggregation, two classes of system states were identified as crucial in reducing 

the size of the MDP model. In addition, the equivalence of the policy obtained by 

the reduced MDP model was established. 

The work reported in this dissertation can be extended in several directions. The 

following are some suggestions: 

1. The OSC problem becomes computationally infeasible for large problem in-

stances. Search techniques such as genetic algorithms and tabu search can be 

used for obtaining optimal or near-optimal solutions. 

2. The proposed models for directional WSNs are based on a simple transmission 

model. The use of more realistic transmission models would be very useful. 

3. The inclusion of A;-coverage, energy consumption and network lifetime needs to 

be considered. 

4. The proposed ILP models are deterministic. Thus, they cannot be used with 

stochastic mobility models. New optimization models need to be developed. 

5. Modeling the sensing region of a sensor as a two-dimensional surface might be 

inadequate. Some applications like undersea monitoring require that the sensing 

region of a sensor be modeled as a three-dimensional space. Thus, the area of 

three-dimensional coverage with directional sensors needs to be explored. The 

works in [81,82] can be used as a starting point. 

6. The notion of state equivalence used in Chapter 8 is too strict and too sensitive. 

It is too strict because it requires that its conditions be met exactly. And, it 

is too sensitive because any perturbation of the transition probabilities can 
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make two equivalent states no longer equivalent. More flexible metrics for state 

equivalence are needed. The works in [73,74] can be used as a starting point. 

7. The state transition probability matrix is built programmatically. This means 

a runtime which largely grows with the number of system states and thus state 

aggregation might not always be helpful. Hence, approximate techniques based 

on reinforcement learning are recommended (see [65-69]). 

8. The possibility of obtaining effective policies based on simple heuristic tech-

niques should be investigated. Heuristic techniques are typically characterized 

by their low runtime and storage requirements. 

9. If inter-sensor communications are allowed, the set of possible actions for each 

biosensor might become large. This would be a limiting factor. A natural 

extension would be to develop techniques for aggregating action spaces. 
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Appendix A 

The Relative Value Iteration 

Algorithm 

The relative value iteration algorithm is a variation of the famous value iteration 

algorithm. This appendix gives the details of its implementation in visual C + + . The 

paralleLfor function from the new Microsoft concurrency namespace is used to speed 

up different parts of the algorithm. This implementation was used for computing the 

results in Chapter 7. 

A . l Matrix 

template <class T> 

class Matrix 
{ 

public: 

typedef std::map<size_t, std::map<size_t , T> > mat_t; 

typedef typename mat_t::iterator row_iter; 

typedef std::map<size_t, T> col_t; 
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typedef typename col_t::iterator col_iter; 

Matrix(size_t i){ m=i; n=i; > 

Matrix(size_t i, size_t j){ m=i; n=j; } 

inline T& operator()(size_t i, size_t j) 
{ 

if(i>=m II j>=n) throw; 

return mat[i] [j] ; 

} 
inline T operator()(size_t i, size_t j) const 
{ 

if(i>=m |I j>=n) throw; 

return mat[i][j]; 

> 
std::vector<T> operator*(const std::vector<T>& x) 

{ //Computes y=A*x 

if(this->m != x.sizeO) throw; 

std::vector<T> y(this->m); 

T sum; 

row_iter ii; 

col_iter jj; 

for(ii=this->mat.begin(); ii!=this->mat.end(); ii++){ 

sum=0; 

for(jj=(*ii).second.beginO; jj!=(*ii).second.end(); jj++H 

sum += (*jj).second * x[(*jj).first]; 

> 
y[(*ii),first]=sum; 

} 
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return y; 

> 
void printMatO 
{ 

row_iter ii; 

col_iter jj; 

f or(ii=this->mat .beginO ; ii!=this->mat.end(); ii++){ 

for( jj = (*ii) . second.beginO ; jj!=(*ii).second.end(); jj++){ 

std::cout « (*ii).first « ' 

std::cout « (*jj).first « ' '; 

std::cout << (*jj).second « std::endl; 

> 
} std::cout « std::endl; 

} 
protected: 

Matrix(){} 

private: 

mat_t mat; 

size_t m; 

size_t n; 

}; 
template <class T> 

class Matrix3D 
{ 

public: 

typedef std::map<size_t, std::map<size_t, std::map<size_t , T> > > mat_t; 

Matrix3D(size_t k, size_t i, size_t j){ a=k; m=i; n=j; } 
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//mat[#Actions][#Rows][#Cols] 

T getElement(size_t a, size_t i, size_t j) 
{ 

return mat [a] [i] [j] ; 
} 

void setElement(size_t a, size_t i, size_t j, T value) 
{ 

mat [a] [i] [j] = value; 
> 

private: 

mat_t mat; 

size_t a; //#Actions 

size_t m; //#Rows 

size_t n; //#Columns 

>; 
template <class T> 

class Matrix2D 

i 

public: 

typedef std::map<size_t, std::map<size_t , T> > mat_t; 

Matrix2D(size_t i, size_t j){ m=i; n=j; > //mat[#Rows][#Cols] 

T getElement(size_t i, size_t j) 
{ 

return mat [i] [j] ; 
> 

void setElement(size_t i, size_t j, T value) 
{ 
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mat [i] [j] = value; 
} 

private: 

mat_t mat; 

size_t m; //#Rows 

size_t n; //#Columns 

>; 

A.2 Definitions 

#include <stdlib.h> 

#include <iostream> 

#include <map> 

#include <string> 

#include <cstdlib> 

#include <vector> 

#include <iomanip> 

#include <sstream> 

#include <ppl.h> 

#include "Matrix.h" 

using namespace std; 

using namespace Concurrency; 

int T = 2; 

int EO = 2; 

int W = 2; //Number of channel states (Not amount of transmission energy) 

double epsilon = 0.01; 
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double ChTransMat[2][2] = {{0.3 , 0.7} , {0.2 , 0.8}}; 

//Transition Probability Matrix for the Channel 

int TransEnergy[3] = {0, 2, 3}; 

//State 1 of channel requires 2 units of energy 

typedef struct _SystemState 
{ 

int Tl, El, Wl, T2, E2, W2, T3, E3, W3; 

}SystemState; 

mapcint, SystemState*> StateTable; 

map<string, int> IndexTable; 

SystemState* CloneSystemState(SystemState* s) 
{ 

SystemState* new_s = (SystemState*) malloc(sizeof(SystemState)); 

new_s->Tl = s->Tl; 

new_s->El = s->El; 

new_s->Wl = s->Wl; 

new_s->T2 = s->T2; 

new_s->E2 = s->E2; 

new_s->W2 = s->W2; 

new_s->T3 = s->T3; 

new_s->E3 = s->E3; 

new_s->W3 = s->W3; 

return(new_s); 
} 

double GetStateTransProb(SystemState* ps, SystemState* ns) 

//Get the state transition probability 
{ 

113 



return(ChTransMat[ps->Wl-l][ns->Wl-l] 

* ChTransMat[ps->W2-l][ns->W2-l] 

* ChTransMat[ps->W3-l][ns->W3-l]); 
> 

bool IsTerminatingState(SystemState* s) 
{ 

if(s->Tl >= T | | s->T2 >= T I I s->T3 >= T I I s->El <= 0 

II s->E2 <= 0 || s->E3 <= 0 I I s->El < TransEnergy[s->Wl] 

|| s->E2 < TransEnergy[s->W2] I I s->E3 < TransEnergy[s->W3]) 

return true; 

else 

return false; 
> 

SystemState* ApplyAction(SystemState* s, int a) 
{ 

SystemState* ns = CloneSystemState(s); 

if(a == 1) 
{ 

ns->Tl = ns->Tl + TransEnergy [ns->Wl]; 

ns->El = ns->El - TransEnergy[ns->Wl]; 

ns->T2 = ns->T2 + TransEnergy[ns->Wl]; 

if(ns->T3 > 0) 

ns->T3 = ns->T3 - 1; 
> 

else if(a == 2) 
{ 

ns->T2 = ns->T2 + TransEnergy[ns->W2] ; 
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ns->E2 = ns->E2 - TransEnergy[ns->W2]; 

ns->Tl = ns->Tl + TransEnergy[ns->W2]; 

ns->T3 = ns->T3 + TransEnergy[ns->W2]; 
} 

else if(a == 3) 
{ 

ns->T3 = ns->T3 + TransEnergy[ns->W3]; 

ns->E3 = ns->E3 - TransEnergy[ns->W3]; 

ns->T2 = ns->T2 + TransEnergy[ns->W3]; 

if(ns->Tl > 0) 

ns->Tl = ns->Tl - 1; 
> 

return(ns); 
> 

map<int, SystemState*> GetNextStates(SystemState* s) 
{ 

map<int, SystemState*> NS; //Set of next states given a base state 

int index = 0; 

for(int wl=l;wl<=W;wl++) 
{ 

for(int w2=l;w2<=W;w2++) 
{ 

for(int w3=1;w3<=W;w3++) 
{ 

index++; 

SystemState* ns = CloneSystemState(s); 

ns->Wl = wl; ns->W2 = w2; ns->W3 = w3; 
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NS[index] = ns; 
> 

> > 
return(NS); 
> 

string GetSystemStatelD(SystemState* s) 
{ 

stringstream ss; 

ss.str(""); 

ss « s->Tl; 

ss « s->El; 

ss « s->Wl; 

ss « s->T2; 

ss « s->E2; 

ss « s->W2; 

ss « s->T3; 

ss « s->E3; 

ss « s->W3; 

return(ss.str()); 

} 
double GetMax(vector<double> v) 
{ 

double tmp = v[0]; 

for(int i=l; i<v. sizeO ; i++) 
{ 

if(v [i] > tmp) 
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{ 
tmp = v [i] ; 
} 

} 
return tmp; 
> 

double CalcVariation(vector<double> Unext, vector<double> U) 
{ 

double diff, MaxV = -99999.99, MinV = 99999.99; 

for(int i=l;i<U.size();i++) 
{ 

diff = Unext [i] - U[i] ; 

if(diff > MaxV) 

MaxV = diff; 

else if(diff < MinV) 

MinV = diff; 
} 

return(MaxV-MinV); 
} 

A. 3 Program 

#include "defs.h" 

int mainO 
{ 

int index = 0; 

int NumStates, IndexOfTerminatingState; 
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//Buidling the State Table 

forCint tl=0;tl<T;tl++) 
{ 

for(int t2=0;t2<T;t2++) 
{ 

for(int t3=0;t3<T;t3++) 
{ 

forCint el=l;el<=E0;el++) 
{ 

forCint e2=l;e2<=E0;e2++) 
{ 

forCint e3=l;e3<=E0;e3++) 
{ 

forCint wl=l;wl<=W;wl++) 
{ 

forCint w2=l;w2<=W;w2++) 
{ 

forCint w3=l;w3<=W;w3++) 
{ 

if(el >= TransEnergy[wl] && e2 >= TransEnergy[w2] 

&& e3 >= TransEnergy[w3]) 
{ 

index++; 

StateTable[index] = CSystemState*) mallocCsizeof(SystemState)); 

StateTable[index]->T1 = tl; 

StateTable[index]->E1 = el; 

StateTable[index]->W1 = wl; 
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StateTable[index]->T2 = t2; 

StateTable[index]->E2 = e2; 

StateTable[index]->W2 = w2; 

StateTable[index]->T3 = t3; 

StateTable[index]->E3 = e3; 

StateTable[index]->W3 = w3; 

string id = GetSystemStatelD(StateTable[index]); 

IndexTable[id] = index; 
» » » » } > 

NumStates = index + 1; 

IndexOfTerminatingState = index + 1; 

Matrix3D<double>* P = new Matrix3D<double>(3,NumStates,NumStates); 

Matrix3D<double>* R = new Matrix3D<double>(3,NumStates,NumStates); 

Matrix3D<int>* NextStatesIndexes = new Matrix3D<int>(3,NumStates,9); 

P->setElement(1,IndexOfTerminatingState, IndexOfTerminatingState, 1. .0) 

P->setElement(2,IndexOfTerminatingState, IndexOfTerminatingState, 1. .0) 

P->setElement(3,IndexOfTerminatingState, IndexOfTerminatingState, 1. .0) 

R->setElement(1,IndexOfTerminatingState, IndexOfTerminatingState, 0, .0) 

R->setElement(2,IndexOfTerminatingState, IndexOfTerminatingState, 0, .0) 

R->setElement(3,IndexOfTerminatingState, IndexOfTerminatingState, 0 .0) 

//Computing P & R 

parallel_for(l, NumStates, 1, [&](int i) { 

SystemState* ps = StateTable[i]; 

for(int a = 1; a <= 3; a++) 
{ 

SystemState* base_state = ApplyAction(ps, a); 

mapcint, SystemState*> NS = GetNextStates(base_state); 
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bool FoundTerminatingState = false; 

NextStatesIndexes->setElement(a, i, 0, 0); 

forCint j=l;j<=8;j++) 
{ 

ifClsTerminatingState(NS[j])) 
{ 

double tmp = P->getElement(a, i, IndexOfTerminatingState); 

tmp = tmp + GetStateTransProbCps, NS[j]); 

P->setElement(a, i, IndexOfTerminatingState, tmp); 

R->setElement(a, i, IndexOfTerminatingState, 1.0); 

if(!FoundTerminatingState) 
{ 

FoundTerminatingState = true; 

int count = NextStatesIndexes->getElement(a, i, 0); 

count++; 

NextStatesIndexes->setElement(a, i, 0, count); 

NextStatesIndexes->setElement(a, i, count, IndexOfTerminatingState); 
} 

> 
else 

•C 

int count = NextStatesIndexes->getElement(a, i, 0); 

count++; 

NextStatesIndexes->setElement(a, i, 0, count); 

string id = GetSystemStateID(NS[j]); 

int index_ns = IndexTable[id]; 

NextStatesIndexes->setElement(a, i, count, index_ns); 
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double prob = GetStateTransProb(ps, NS[j]); 

P->setElement(a, i, index_ns, prob); 

//P->setElement(a, i, index_ns, 0.125); 

R->setElement(a, i, index_ns, 1.0); 
} 

> 
free(base_state); 
> 

}); 
Matrix2D<double>* ARM = new Matrix2D<double>(NumStates, 3); 

bool done = false; 

for(int a=l;a<=3;a++){ 

parallel_for(l, NumStates+1, 1, [&](int row) { 

double v = 0.0; 

for(int col=l; col<=NextStatesIndexes->getElement(a, row, 0);col++) 
{ 

int ns_index = NextStatesIndexes->getElement(a, row, col); 

v = v + P->getElement(a, row, ns_index) * R->getElement(a, row, ns_index); 
} 

ARM->setElement(row, a, v); 

»; } 

vector<double> U(NumStates+l); 

vector<double> Unext(NumStates+1); 

vector<int> Policy(NumStates+l); 

vector<double> Ql(3); 

Matrix2D<double>* Q2 = new Matrix2D<double>(NumStates, 3); 
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double g, variation; 

while(!done) 
{ 

parallel_for(1, 4, 1, [&](int a) { 

double v = 0.0; 

for(int 1=1;i<=NumStates;i++) 
{ 

v = v + P->getElement(a, IndexOfTerminatingState, i) * U[i] ; 
} 

Q1.push_back(ARM->getElement(IndexOfTerminatingState,a) + v); 

» ; 

g = GetMax(Ql); 

parallel_for(l, NumStates+1, 1, [&](int i) { 

double MaxValue = -999999.99; 

int BestAction = 0; 
for(int a=l;a<=3;a++) 
{ 

double v = 0.0; 

for(int col=l;col<=NextStatesIndexes->getElement(a, i, 0);col++) 
{ 

int ns_index = NextStatesIndexes->getElement(a, i, col); 

v = v + P->getElement(a, i, ns_index) * U[ns_index] ; 
> 

if(ARM->getElement(i,a)+v > MaxValue) 
{ 

MaxValue = ARM->getElement(i,a)+v; 

BestAction = a; 
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> > 
Unext[i] = MaxValue - g; 

Policy[i] = BestAction; 

» ; 

variation = CalcVariation(Unext, U); 

if(variation < epsilon) 

done = true; 

else 

U = Unext; 
> 

SystemState* s = (SystemState*) malloc(sizeof(SystemState)); 

s->Tl = 0; 

s->El = E0; 

s->Wl = 1; 

s->T2 = 0; 

s->E2 = E0; 

s->W2 = 1; 

s->T3 = 0; 

s->E3 = E0; 

s->W3 = 1; 

string id = GetSystemStatelD(s); 

index = IndexTable[id]; 

printf("\nExpected System Lifetime = °/,f", U[index]); 

return 0; 
> 
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Appendix B 

Essential Functions 

This appendix shows the Matlab implementations for some essential concepts and 

algorithms. 

B . l Computing SAR in the Near Field 

function v = SAR 

F = 2 * 1CT6; °/„ Frequency 

sigma = 0.5476; 

omega = 2 * pi * F; 

mu = 1; % permeability 

epsilon = 826; 

rho = 1040; 

I = 0.01; 7. Sinusoidal current driving the antenna (Ampers) 

dl = 0.04; °/0 Length of antenna in meters 

% Attenuation constant 

alpha = omega * sqrt((mu * epsilon / 2) 

* (sqrt(l + (sigma / omega * epsilon)~2) - 1)); 

% Phase constant 
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beta = omega * sqrt((mu * epsilon / 2) 

* (sqrt(l + (sigma / omega * epsilon)~2) + 1)); 

e = 2.7182; 

R = 0.02; 

gamma = sqrt(alpha~2 + beta"2); 

v = ((sigma * mu * omega) 

/ (rho * sqrt(sigma~2 + epsilon~2 * omega~2))) 

* (((I * dl * e~(-l * alpha * R)) / 4 * pi) 

* ((1 / R~2) + gamma / R))~2; 

B.2 Computing the Temperature Increase 

function dT = Temperature 

delta_t = 10; % Time step of FDTD 

b = 2700; % Blood perfusion constant 

rho = 1040; °/0 Mass density 

Cp = 3600; % Specific heat of the tissue 

K = 0.498; % Thermal conductivity 

delta = 0.005; % Cell size 

Tb = 37; % Fixed blood temperature 

Pc = 0.02; % Power dissipation of circuitry (mW) 

SAR = 2.5205e-106; °/„ Specific Absorption Rate (W/Kg) 

Tn = 37; % Normal human body temperature 

T(1) = 37; 

for n = 1:1000 

T(n+1) = (1 - ((delta_t * b) / (rho * Cp)) 

- (4 * delta_t * K) / (rho * Cp * delta~2)) * T(n) 
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+ (delta.t / Cp) * SAR + ((delta_t * b) / (rho * Cp)) 

* Tb + (delta / (rho * Cp)) * Pc 

+ ((delta_t * K) / (rho * Cp * delta~2)) * (4 * Tn); 

end 

dT = T(1000) - Tn; 

B.3 Computing the State Transition Probabilities 

for the Wireless Channel 

% N = Number of channel states 

% SNR = SNR thresholds 

% Example: 

N = 5 

°/„ SNR = [0.05 2.02 3.65 5.05 6.27]; 

function p = ComputeChannelStateTransProb(N, SNR) 

p = zeros(N); 

Tp = 0.003; °/„ Packet duration (3 msec) 

Ps = 1 / N; % Steady-state probability for each channel state 

fd = 60; % Doppler frequency (Hz) 

for i = 1:N 

if i == 1 

p(i, i+1) = ((sqrt(2 * pi * SNR(i+l)) * fd 

* exp(-l * SNR(i+l))) * Tp) / Ps; 

p(i,i) = 1 - p(l, 2); 

elseif i == N 

p(i, i-1) = ((sqrt(2 * pi * SNR(i)) * fd 

* exp(-l * SNR(i))) * Tp) / Ps; 
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p(i, i) = 1 - p(N, N-l); 

else 

p(i, i+1) = ((sqrt(2 * pi * SNR(i+l)) * fd 

* exp(-l * SNR(i+l))) * Tp) / Ps; 

p(i, i-1) = ((sqrt(2 * pi * SNR(i)) * fd 

* exp(-l * SNR(i))) * Tp) / Ps; 

p(i, i) = 1 - (p(i, i+1) + p(i, i-1)); 

end 

end 

B.4 Computing the Transition and Reward Matri-

ces for the M D P in §7.2 

P = cell(l, Num_Sensors); 

R = cell(l, Num_Sensors); 

parfor a = 1:Num_Sensors 

Prob = sparse(Num_System_States, Num_System_States); 

Reward = sparse(Num_System_States, Num_System_States); 

for i = 1:Num_System_States 

if(i == IndexTerminatingState) 

Prob(i, i) = 1.0; 

Reward(i, i) = 0.0; 

elseif(i == IndexFinalValidState) 

Prob(i, IndexTerminatingState) = 1.0; 

Reward(i, IndexTerminatingState) = 1.0; 

else 

ps = StateTable{i, 1>; 
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base_state = ApplyAction(ps, a); 

NextStates = GetNextStates(base_state); 

for j = 1:size(NextStates,1) 

ns = NextStates{j, 1}; 

ns_index = Getlndex(ns, StateTable, Statelndex); 

Prob(i, ns_index) = Prob(i, ns_index) 

+ NSTransProb(ps, ns, ChTransMat); 

Reward(i, ns_index) = 1.0; 

end 

end 

end 

P{1, a} = Prob; 

R{1, a} = Reward; 

end 

B.5 Computing the Transition and Reward Matri-

ces for the M D P in §8.2 

for i = 1:size(StateTable,1) 

for a = 1:A % A = Num_Actions 

% Check if action a can be performed at state i 

if(Action(i,a) == true) 

ps = StateTable{i, 1}; 

BaseState = ApplyAction(ps, a); 

for j = 1:W 7, W = Num_Chan_States 

BaseState(3) = j; 

index = GetStatelndex(BaseState, StateTable); 
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P(i, index, a) = ChanStateTranProb(ps(3), j); 

if(a == 1) % Sample 

R(i, index, a) = 1; 

else 

R(i, index, a) = 0; 

end 

end 

else 

P(i, i, a) = 1; 

R(i, i, a) = 0; 

end 

end 

end 

B.6 Q-Learning 

NumActions = 3; 

Q = zeros(NumStates, NumActions); 

N = 10000; % Number of iterations (i.e., steps) in each episode 

NumEpisodes = 100; 

epsilon = 0.5; 

alpha =0.2; % Learning rate 

gamma = 0.1; % Discount factor 

for i = 1:NumEpisodes 

ps = [0 E0 1]; % Initial state 

for j = 1:N 

ps_index = GetStateIndex(ps, StateTable); 
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if(rand <= 1 - epsilon) 

[v a] = max(Q(ps_index, :)); 

else 

a = randi(NumActions); 

end 

while(Action(ps_index,a) == false) 

if(rand <= 1 - epsilon) 

[v a] = max(Q(ps_index, :)); 

else 

a = randi(NumActions); 

end 

end 

if(a == 1) 

r = 1; 

else 

r = 0; 

end 

base_state = ApplyAction(ps,a); 

base_state(3) = randi(W); % W = Num_Chan_States 

ns = base_state; 

ns_index = GetStateIndex(ns, StateTable); 

Q(ps_index, a) = Q(ps_index, a) + alpha 

* (r + gamma * max(Q(ns_index, :)) - Q(ps_index, a)); 

ps = ns; 

end 

end 

[QVlaue QPolicy] = max(Q, [], 2); 
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B.7 Network Lifetime Simulation 

NumSimRuns = 1000; 

LifeTime = zeros(NumSimRuns,1); 

for i = 1:NumSimRuns 

% Initial network state (three biosensors) 

ps = [0 E0 1 0 E0 1 0 E0 1]; 

while("IsTerminatingState(ps)) 

ps_index = Getlndex(ps, StateTable); 

a = Policy(ps_index); 

ns = ApplyAction(ps, a); 

°/0 Update state of wireless channel for each biosensor 

ns(3) = Next_Channel_State(l); 

ns(6) = Next_Channel_State(2); 

ns(9) = Next_Channel_State(3); 

ps = ns; 

LifeTime(i) = LifeTime(i) + 1; 

end 

end 

fprintf('-> Average Simulated Lifetime (Optimal Policy) = "/.An', 

sum(LifeTime)/NumSimRuns); 
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